Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Hull: ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/9z...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/1k...
Other literature type . 2021
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new perspective on teaching the natural exponential to engineering students

منظور جديد في تدريس الأسي الطبيعي لطلبة الهندسة
Authors: Mukhtar Ullah; Muhammad Naveed Aman; Olaf Wolkenhauer; Jamshed Iqbal;

A new perspective on teaching the natural exponential to engineering students

Abstract

L'exponentiel naturel et le logarithme sont généralement introduits aux étudiants en génie de premier cycle dans un cours de calcul en utilisant la notion de limites. Nous présentons ici une approche pour introduire l'exponentiel/logarithme naturel à travers une nouvelle interprétation des dérivés. Cette approche ne s'appuie pas sur des limites, permettant une introduction précoce et intuitive de ces fonctions. La question derrière notre contribution est de savoir si l'on peut introduire des dérivés en utilisant uniquement des polynômes et des séries de puissance ? Motivés par une exposition antérieure des étudiants en génie aux équations différentielles, nous démontrons que l'exponentiel/logarithme naturel peut provenir de deux équations différentielles communes. Notre approche sans limite des dérivés fournit une interprétation intuitive de e, le nombre d'Euler, et une introduction intuitive des constantes de temps dans les systèmes dynamiques de premier ordre.

El exponencial natural y el logaritmo se introducen típicamente a los estudiantes de ingeniería de pregrado en un curso de cálculo utilizando la noción de límites. Aquí presentamos un enfoque para introducir el exponencial/logaritmo natural a través de una interpretación novedosa de las derivadas. Este enfoque no se basa en límites, lo que permite una introducción temprana e intuitiva de estas funciones. La pregunta detrás de nuestra contribución es si se pueden introducir derivadas utilizando solo polinomios y series de potencias. Motivados por una exposición anterior de estudiantes de ingeniería a ecuaciones diferenciales, demostramos que el exponencial/logaritmo natural puede surgir de dos ecuaciones diferenciales comunes. Nuestro enfoque sin límites para las derivadas proporciona una interpretación intuitiva de e, el número de Euler, y una introducción intuitiva de constantes de tiempo en sistemas dinámicos de primer orden.

The natural exponential and logarithm are typically introduced to undergraduate engineering students in a calculus course using the notion of limits. We here present an approach to introduce the natural exponential/logarithm through a novel interpretation of derivatives. This approach does not rely on limits, allowing an early and intuitive introduction of these functions. The question behind our contribution is whether one can introduce derivatives using only polynomials and power series? Motivated by an earlier exposure of engineering students to differential equations, we demonstrate that the natural exponential/logarithm can arise from two common differential equations. Our limit-free approach to derivatives provides an intuitive interpretation of e, the Euler number, and an intuitive introduction of time constants in first-order dynamical systems.

عادة ما يتم تقديم الأسي واللوغاريتم الطبيعي لطلاب الهندسة الجامعيين في دورة حساب التفاضل والتكامل باستخدام مفهوم الحدود. نقدم هنا نهجًا لتقديم الأسي/اللوغاريتم الطبيعي من خلال تفسير جديد للمشتقات. لا يعتمد هذا النهج على الحدود، مما يسمح بإدخال مبكر وبديهي لهذه الوظائف. السؤال وراء مساهمتنا هو ما إذا كان يمكن للمرء إدخال المشتقات باستخدام متعددات الحدود ومتسلسلة القوى فقط ؟ بدافع من التعرض المبكر لطلاب الهندسة للمعادلات التفاضلية، نوضح أن الأسي/اللوغاريتم الطبيعي يمكن أن ينشأ من معادلتين تفاضليتين مشتركتين. يوفر نهجنا الخالي من الحدود للمشتقات تفسيرًا بديهيًا لـ e، وعدد Euler، وإدخالًا بديهيًا لثوابت الوقت في الأنظمة الديناميكية من الدرجة الأولى.

Keywords

370, Applications of Generalized Functions in Mathematics and Physics, Euler's formula, Mathematical analysis, 510, Theoretical Computer Science, Exponential formula, FOS: Mathematics, Mathematics Education, Logarithm, Floating-Point Arithmetic in Scientific Computation, Mathematical Physics, Interpretation (philosophy), Algebra over a field, FOS: Clinical medicine, Exponential function, Pure mathematics, Power series, Limit (mathematics), Applied mathematics, Computer science, 004, Double exponential function, Programming language, History of Mathematics in Education and Research, Computational Theory and Mathematics, Dentistry, Physical Sciences, Computer Science, Medicine, Logarithmic function, Calculus (dental), Ordinary differential equations, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green