
We define the quotient and complete NUOS-quotient map (NUOS stands for nonunital operator system) in the category of nonunital operator systems. We prove that the greatest reduced tensor product max0 is projective in some sense. Moreover, we define a pseudo unit in a nonunital operator system and give some necessary and sufficient conditions under which a nonunital operator system has an operator system structure.
pseudo unit, Operator spaces and completely bounded maps, nonunital operator system, complete NUOS-quotient map, Tensor products of \(C^*\)-algebras
pseudo unit, Operator spaces and completely bounded maps, nonunital operator system, complete NUOS-quotient map, Tensor products of \(C^*\)-algebras
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
