
Two methods for computing numerical conformal mappings are compared. The first, due to Symm, uses a Fredholm integral equation of the first kind while the other, due to Lichtenstein, uses a Fredholm integral equation of the second kind. The two methods are tested on ellipses with different ratios of major to minor axes. The method based on the integral equation of the second kind is superior if the ratio is less than or equal to 2.5. The opposite is true if the ratio is greater than or equal to 10. Similar results are obtained for other regions.
Schwarz-Christoffel-type mappings, Software, source code, etc. for problems pertaining to functions of a complex variable
Schwarz-Christoffel-type mappings, Software, source code, etc. for problems pertaining to functions of a complex variable
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
