Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advances in Applied ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Applied Mathematics and Mechanics
Article . 2017 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Conservative Finite Volume Element Schemes for the Modified Regularized Long Wave Equation

New conservative finite volume element schemes for the modified regularized long wave equation
Authors: Yan, Jinliang; Lai, Ming-Chih; Li, Zhilin; Zhang, Zhiyue;

New Conservative Finite Volume Element Schemes for the Modified Regularized Long Wave Equation

Abstract

AbstractIn this paper, we propose a new energy-preserving scheme and a new momentum-preserving scheme for the modified regularized long wave equation. The proposed schemes are designed by using the discrete variational derivative method and the finite volume element method. For comparison, we also propose a finite volume element scheme. The conservation properties of the proposed schemes are analyzed and we find that the energy-preserving scheme can precisely conserve the discrete total mass and total energy, the momentum-preserving scheme can precisely conserve the discrete total mass and total momentum, while the finite volume element scheme merely conserve the discrete total mass. We also analyze their linear stability property using the Von Neumann theory and find that the proposed schemes are unconditionally linear stable. Finally, we present some numerical examples to illustrate the effectiveness of the proposed schemes.

Keywords

finite volume element method, Solitary waves in solid mechanics, Finite volume methods for boundary value problems involving PDEs, momentum, MRLW equation, Finite volume methods for initial value and initial-boundary value problems involving PDEs, Finite volume methods applied to problems in solid mechanics, Finite difference methods for initial value and initial-boundary value problems involving PDEs, mass, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, PDEs in connection with mechanics of deformable solids, energy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!