Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5281/zenodo...
Dataset . 2023
License: CC BY
Data sources: Sygma
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The ACRE Crop-Weed Dataset

Authors: Riccardo Bertoglio; Anne Kalouguine; Daniel Boffety; Manon Boulet; Michel Berducat; Davide Facchinetti; Giulio Fontana; +1 Authors

The ACRE Crop-Weed Dataset

Abstract

For a detailed description of this dataset, based on the Datasheets for Datasets (Gebru, Timnit, et al. "Datasheets for datasets." Communications of the ACM 64.12 (2021): 86-92.), check the ACRE_datasheet.md file. For what purpose was the dataset created? The ACRE dataset was created within the scope of the METRICS project to serve as a benchmark for weed detection models in various tasks, including object detection, semantic segmentation, and instance segmentation. The Agri-Food Competition for Robot Evaluation (ACRE) is a benchmarking competition specifically designed for autonomous robots and smart implements, with a primary focus on agricultural activities like weed removal and field navigation. These capabilities play a vital role in facilitating the transition to Digital Agriculture. The ACRE competition, which can be found at https://metricsproject.eu/agri-food, is part of the METRICS project, an EU-funded initiative dedicated to the metrological evaluation and testing of autonomous robots. What do the instances that comprise the dataset represent? The instances consist of RGB images depicting both crop and weed plants. The crop category encompasses two species: maize (Zea mays) and beans (Phaseolus vulgaris). On the other hand, the weed category encompasses four species: ryegrass (Lolium perenne), mustard (Sinapis arvensis), matricaria (Matricaria chamomilla), and lamb's quarter (Chenopodium album). Is there a label or target associated with each instance? Every image in the dataset is accompanied by an XML file that contains instance segmentation annotations. What mechanisms or procedures were used to collect the data? The data collection process involved the use of a four-wheel skid-steering robot that was equipped with a Basler acA2000-50gc RGB camera. The camera was mounted on the robot in such a way that its principal axis was directed perpendicular to the ground. It had a resolution of 2046 x 1080 pixels. The robot was teleoperated and operated at an average speed of 0.2 m/s. To capture the data, the camera's stream was recorded in rosbag format. For this purpose, the camera was connected to a PC running Ubuntu 18.04 and ROS Melodic via an Ethernet interface.

Keywords

precision agriculture, autonomous weeding, instance segmentation, weeds, agricultural robotics, bean, maize

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 94
    download downloads 9
  • 94
    views
    9
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
94
9