Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

WildfireSpreadTS: A dataset of multi-modal time series for wildfire spread prediction

Authors: Gerard, Sebastian; Zhao, Yu; Sullivan, Josephine;

WildfireSpreadTS: A dataset of multi-modal time series for wildfire spread prediction

Abstract

We present a multi-temporal, multi-modal remote-sensing dataset for predicting how active wildfires will spread at a resolution of 24 hours. The dataset consists of 13.607 images across 607 fire events in the United States from January 2018 to October 2021. For each fire event, the dataset contains a full time series of daily observations, containing detected active fires and variables related to fuel, topography and weather conditions. Documentation WildfireSpreadTS_Documentation.pdf includes further details about the dataset, following Gebru et al.'s "Datasheets for Datasets" framework. This documentation is similar to the supplementary material of the associated NeurIPS paper, excluding only information about experimental setup and results. For full details, please refer to the associated paper. Code: Getting started Get started working with the dataset at https://github.com/SebastianGer/WildfireSpreadTS. The code includes a PyTorch Dataset and Lightning DataModule to allow for easy access. We recommend converting the GeoTIFF files provided here to HDF5 files (bigger files, but much faster). The necessary code is also available in the repository. This work is funded by Digital Futures in the project EO-AI4GlobalChange. The computations were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) at C3SE partially funded by the Swedish Research Council through grant agreement no. 2022-06725.

Related Organizations
Keywords

remote sensing, climate change, spatio-temporal, multi-temporal, multi-modal, wildfire, computer vision

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average