Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Assessing the conservation status of Chinese freshwater fish using deep learning

Authors: Chen, Jinnan; Ding, Chengzhi; He, Dekui; Ding, Liuyong; Ji, Songhao; Du, Tingqi; Sun, Jingrui; +2 Authors

Assessing the conservation status of Chinese freshwater fish using deep learning

Abstract

The lack of information on the extinction risk of most species is a fundamental challenge in prioritizing conservation strategies and bending the curve of current biodiversity decline. Machine learning methods have shown promising potential to fill this gap, but their applicability remains to be validated at different taxa (especially aquatic species) and spatial scales. We assessed the extinction risk of 1,162 freshwater fish species in China that have not yet been included in the latest IUCN Red List using multiple neural network algorithms based on datasets of species occurrences, biological traits, phylogeny, and relevant environmental layers. The best deep learning models dramatically improved the assessment coverage from 29.9% (496 species) to 93.2–93.9% (1,545–1,557 species) of the whole fauna with an accuracy of 95.4–99.0%. By combining our prediction results with the IUCN Red List, we found that 23.8–26.5% (394–440 species) of Chinese freshwater fishes were identified as possibly threatened species, which is roughly four times the IUCN assessment. Newly assessed species and threatened species were mainly from the orders Cypriniformes (prediction added: 837–846 species; final threatened: 325–350 species), Siluriformes (113–122; 28–37) and Perciformes (74–76; 18–25). The increase in threatened species richness based on predictions was led by the upper reaches of the Pearl and Yangtze. Overall, our findings suggest that deep learning algorithms can provide robust and time-saving assessments of extinction risk for entire freshwater fish fauna on a large national scale, thereby facilitating relevant conservation prioritization.

Related Organizations
Keywords

Freshwater fish; China; conservation assessment; artificial intelligence; IUCN; global change

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 74
    download downloads 24
  • 74
    views
    24
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
74
24
Related to Research communities
Italian National Biodiversity Future Center