Downloads provided by UsageCounts
The Tanzanian agriculture industry faces a great challenge caused by pests and diseases threatening food security. Pests such as tomato leaf miners, aphids, fall armyworms (FAW), and bean leaf miners devastate crops. Also, diseases such as maize streak virus, early blight, Powdery mildew, Leaf spot, Rusty brown leaf, foliar disease, Bacterial Wilt, Blossom end rot, Flower abortion, Leaf Curl and Black rot have caused the crop failure that leads to yield reduction. So, precisely and accurately detecting such pests and diseases to improve agriculture productivity in the country is paramount. However, manual detection is cumbersome, time-consuming and costly. So, automating the procedure using machine vision technologies is necessary for sustainable prosperous agriculture. Therefore, this dataset presents the first Tanzanian agricultural classification dataset that contains 7992 healthy and unhealthy crops images (maize, beans, green peppers, onions, okra, watermelons, sunflowers, African eggplants, tomatoes, Chinese cabbage, hot peppers, wheat, leaf kale and cabbage). Images were collected in real-world conditions in Morogoro, Tanzania, in August and September 2022, using smartphones and professional GoPro Hero 9 cameras. The dataset is called YEESI Dataset. It is used as Open Data. The authors expect this dataset to revolutionize applications of Artificial Intelligence (AI) in agriculture for evaluating classification models related to crop pests, diseases and weed problems from open data.
Machine Vision, Precision Agriculture, Horticultural Dataset, Tanzanian Dataset, Digital Agriculture
Machine Vision, Precision Agriculture, Horticultural Dataset, Tanzanian Dataset, Digital Agriculture
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 369 | |
| downloads | 112 |

Views provided by UsageCounts
Downloads provided by UsageCounts