Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EPJ Web of Conferenc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EPJ Web of Conferences
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EPJ Web of Conferences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EPJ Web of Conferences
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5281/zenodo...
Article . 2020
License: CC BY
Data sources: Sygma
versions View all 6 versions
addClaim

ESFR SMART PROJECT CONCEPTUAL DESIGN OF IN-VESSEL CORE CATCHER

Authors: Guidez, Joel; Gerschenfeld, Antoine; Bodi, Janos; Mikityuk, Konstantin; Alvarez-Velarde, Francisco; Romojaro, Pablo; Diaz-Chiron, U.;

ESFR SMART PROJECT CONCEPTUAL DESIGN OF IN-VESSEL CORE CATCHER

Abstract

Even before Fukushima accident occurred, the safety authorities have required that new power plant designs must take into account beyond design-basis accidents including possible core meltdown. Among the mitigation strategies, the corium retention must be ensured, so a core catcher is implemented in the design of the Generation IV Sodium-cooled Fast Reactor. An internal core catcher within the vessel (in-vessel retention) is the option chosen for the European Sodium-cooled Fast Reactor investigated in the H2020 ESFR-SMART project. The new core investigated in ESFR SMART with lower void effect has a better behavior in case of severe accident. The use of passive control rods is also an improvement for prevention of severe accident. Moreover, we have in the ESFR SMART core dedicated tubes for corium discharge that should allow discharging quickly the melted materials and should help to prevent large criticality. Calculations show that after several seconds, these discharge tubes begin to open, and the corium arrives by this preferential way on the core catcher, quicker and in limited quantities at the beginning of the accident. However, the core catcher is designed to be able to retain the whole core meltdown. Its design allows good possibilities of cooling by natural convection of sodium. Some thermal calculations were provided with a multi-layer concept but the global mechanical conception seems difficult. So a one layer core catcher in molybdenum, material compatible with sodium and used on the core catcher of the last SFR, started in 2016: BN 800, is investigated. Explanations are given on the choice of this material proposed for the catcher and used for thermal calculations. With the proposed design, the corium is spread on the core catcher and the residual power of the corium can be dispelled by natural convection by the sodium circulating around and above the core catcher without boiling of sodium if the melted core is less than about 25% of whole core. In case of bigger quantities of melted core, boiling of sodium could appear under the core catcher. Further less conservative calculations would be necessary to better know the limit.

Keywords

safety, generation-iv nuclear system, Physics, QC1-999, severe accident mitigation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 10
    download downloads 8
  • 10
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Top 10%
Average
Average
10
8
Green
Published in a Diamond OA journal