
The numerical simulation of sheet metal forming processes depends on the accuracy of the constitutive model used to represent the mechanical behaviour of the materials. The formulation of these constitutive models, as well as their calibration process, has been an ongoing subject of research. In recent years, there has been a special focus on the application of data-driven techniques, namely Machine Learning, to address some of the difficulties of constitutive modelling. This review explores different methodologies for the application of Machine Learning algorithms to sheet metal constitutive modelling. These methodologies include the use of machine learning algorithms in the identification of constitutive model parameters and the replacement of the constitutive model by a metamodel created by a machine learning algorithm. A discussion about the merits and limitations of the different methodologies is presented, as well as the identification of some possible gaps in the literature that represent opportunities for future research.
This project has received funding from the Research Fund for Coal and Steel under grant agreement No 888153.
Machine Learning, Data-driven Learning, Parameter identification, Sheet Metal Forming, Machine learning, Data-driven learning, Parameter Identification, Sheet metal forming, Constitutive Modelling, Metamodeling, Constitutive modelling
Machine Learning, Data-driven Learning, Parameter identification, Sheet Metal Forming, Machine learning, Data-driven learning, Parameter Identification, Sheet metal forming, Constitutive Modelling, Metamodeling, Constitutive modelling
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
