Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://zenodo.org/r...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/4311...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/mwsym....
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

Rhodamine B Temperature Dosimetry of Biological Samples Interacting with Electromagnetic Fields in Macrosystems

Authors: Nefzi, Amani; Carr, Lynn; Dalmay, Claire; Pothier, Arnaud; Leveque, Philippe; Arnaud-Cormos, Delia;

Rhodamine B Temperature Dosimetry of Biological Samples Interacting with Electromagnetic Fields in Macrosystems

Abstract

Exposing living cells to a certain level of Electromagnetic Field (EMF) might induce some biological effects including temperature elevation. In this paper, we show the dosimetry of exposure systems such as an Open Transverse Electro-Magnetic (TEM) cell allowing the study of the effect of EMF on biological samples exposed to 1.8 GHz signals. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared to numerical dosimetry, based on a FDTD method. To investigate dosimetry at a microscopic level the fluorescence of the temperature dependent dye Rhodamine B was measured with fluorescence microscopy. The results are confirmed by measurements and simulations with a SAR of 13.9 and 11.8 W/kg for 1 W incident power, respectively. Results evidence that the objective working distance of the microscope strongly influence SAR values. After calibration, the fluorescence fits well with the temperature variation measured by the probe.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average