With the advent of ultrashort light pulses of picosecond/femtosecond durations, numerous novel applications and potential capabilities have emerged. However, ultrashort fiber laser must operate in a nonlinear propagation regime with a complex balance among gain, spectral filtering, dispersion and nonlinear broadening. Furthermore, all current families of ultrafast lasers are based on single mode fibers (SMFs) and these have now reached limits in their application domains because of their inherent limited peak power handling capability. In order to overcome the aforementioned barrier for ultrafast fiber lasers, and enhance their operational range, I suggest to replace single mode fibers by multimode fibers. The main goal of this proposed MSCA Individual Fellowship is therefore to develop new ideas for the mode locking of lasers based on multimode gain fiber by controlling their spatio-temporal complex dynamics, and then to demonstrate generation of ultrashort light pulses with high average power and high peak power. The nonlinear coupling among the fiber modes can self-maintain a high degree of spatial coherence while permitting a high degree of temporal coherence with the locking of the modes on a common group delay. I propose to explore multimode space-time soliton propagation and beam nonlinear “self-cleaning” in amplifying rare-earth-doped multimode fiber and in multimode fiber laser. I believe that this could lead to the new building blocks of high power picosecond or femtosecond fiber lasers. XLIM is an interdisciplinary institute, hosting various fields of research. It is recognised as one of the top institutions in photonics and micro-electronics, and since 2011 has been considered as a “Laboratoire d’Excellence” by the French government. XLIM can therefore provide for an excellent environment in which I can conduct the proposed research while also achieving the required training, communication and dissemination objectives of the MSCA Fellowship.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::61a0beba68bc72e11f553cd2aa89c6c9&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::61a0beba68bc72e11f553cd2aa89c6c9&type=result"></script>');
-->
</script>
Multidrug-resistant bacteria are spreading worldwide and present a serious public health issue. Bacterial resistance has to be addressed with a global approach connecting human health with animals and the environment. Mobile genetic elements (MGEs) such as bacterial plasmids, transposons or cassettes of integrons, as frequent carriers of antibiotic resistance genes (ARGs), play an important role in the global spread of ARGs among bacterial communities. My research aims to understand how environmental parameters could modulate the dynamics of MGEs involved in ARG dissemination and contribute to the global burden of antibiotic resistance. For this aim, I will use a global approach that merges medical and molecular microbiology, microbiota studies and genomic studies (employing next generation sequencing techniques). Single monospecies-biofilms as well as natural biofilms grown from wastewaters will be used as models of investigation. The proposed research will profoundly improve my knowledge in molecular and medical microbiology techniques to study MGEs associated with antibiotic resistance. This project will be pivotal for my personal development to become an independent researcher and will provide me with the unique opportunity to work with experts in the field of MGEs, antibiotic resistance and the environment. I will be exposed to novel ideas and input from renowned researchers belonging to scientific disciplines unrelated to my background that will have a strong impact on my personal and scientific development. Furthermore, I aim to establish a series of lectures and seminars for the general (research) community to further increase awareness of the importance and relevance of the global fight against antibiotic resistance.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4859506d96865ce6f1224dd6b90120c6&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4859506d96865ce6f1224dd6b90120c6&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=snsf________::172f8e0c16e89cd112dca953ede80932&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=snsf________::172f8e0c16e89cd112dca953ede80932&type=result"></script>');
-->
</script>
In the past decade, biosensors have provided an effective way for the physical and chemical science to improve the quality of the life in the modern society. The biosensors are usually based on systems that can detect electronic or optical signals in terms of the concentrations of biological molecules. Thus, it allows the monitoring of molecular interactions from the signal change. Useful applications so far include DNA analysis, glucose concentration test in human blood, sensing of toxins in the water, food and atmosphere. Current challenges for the biosensors are to improve their detection sensitivity and efficiency while with reduced size and operation cost. My research aims to achieve simple, fast and sensitive detection through label-free biosensing technology. For this aim, I will develop a novel plasmonic sensor based on optimized 2D nanostructures with magneto-optic materials for achieving ultra-high sensitivity for the hard-to-identify small biomolecules and explore new physics on the magneto-plasmonic effects generated by the coupling between the 2D nanomaterials and gold/magnetic materials metasurfaces. Miniaturization for commercially portable products embedding those highly sensitive nanostructures will be studied. The proposed research will significantly improve my knowledge in exploiting the optical/magnetic properties of novel plasmonic nanomaterials for enhanced light matter interactions. This project will play a pivotal role for my personal development as an independent researcher and provide me with the unique opportunity to work with experts in the field of materials, electromagnetics and sensing. I will benefit from ideas and inputs from renowned researchers from various scientific disciplines to compliment my background. Moreover, I aim to deliver the related research works though a series of seminars and lectures to present the importance and relevance of utilizing novel nanostructures for sensor development.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::2b24de4128d3b65a618331eac68fec90&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::2b24de4128d3b65a618331eac68fec90&type=result"></script>');
-->
</script>
The WAVESCOPE project is about exploiting a novel optical concept recently introduced by the PI in the domain of medical imaging. This concept deals with the frontier research topic in the photonics, i.e. the self-control of the spatial quality of optical beams in multimode nonlinear optical fibers. The WAVESCOPE technology is poised to enable a breakthrough in the clinical domain, providing for the first time ever the stable delivery of high power and strongly focused optical beams with multimode optical fibers into the demanding domain of intraoperative imaging. In the state-of-the-art multimode nonlinear optical devices, propagation in multimode fibers is hampered by randomization of light beams, leading to beam scrambling after short lengths of fiber. This makes the use of multimode fibers unviable for real-time imaging, because of the necessary lengthy pre- and post-processing of the optical signal. Our approach is to exploit the intensity dependent refractive index of fibers to recover the spatial beam quality of a multimode wave. In the project we shall develop a new multimode fiber based device for scanning 3D samples with micrometer resolution by using ultrashort high peak power optical pulses, whereby fiber nonlinearity provides an environmentally robust compensation of temporal and spatial dispersion, thus preventing information spreading in time domain, and beam quality loss in the spatial domain. WAVESCOPE technology has applications in many industry fields: here we will demonstrate the proof-of-principle generation of high-resolution optical images in optical microscopy/endoscopy, thereby resolving an uncovered need on the introduction of the intraoperative pathologic assessment in oncology through the in-situ optical biopsy.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a4faaeb0e692d49c7614013bc82b5a7a&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::a4faaeb0e692d49c7614013bc82b5a7a&type=result"></script>');
-->
</script>