Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/1044...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2016
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2016
License: CC BY
Data sources: ZENODO
https://doi.org/10.1109/iwcmc....
Article . 2016 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/qb...
Other literature type . 2016
Data sources: Datacite
https://dx.doi.org/10.60692/fb...
Other literature type . 2016
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Multimedia Broadcast for heterogeneous users in cellular networks

بث فعال للوسائط المتعددة للمستخدمين غير المتجانسين في الشبكات الخلوية
Authors: Chetna Singhal; Carla-Fabiana Chiasserini; Claudio Casetti;

Efficient Multimedia Broadcast for heterogeneous users in cellular networks

Abstract

Des services de diffusion multimédia et de multidiffusion (MBMS) efficaces pour les utilisateurs hétérogènes dans les réseaux cellulaires impliquent un codage vidéo adaptatif, une transmission multimédia en couches, des paramètres de transmission optimisés et une définition dynamique de la zone de diffusion. Cet article traite du MBMS en proposant une approche multidimensionnelle pour la définition de la zone de diffusion, qui fournit une solution efficace à tous les aspects ci-dessus. En utilisant le clustering multicritères K-means, notre système offre aux utilisateurs des niveaux élevés de qualité d'expérience (QoE) des services multimédias. Le codage vidéo adaptatif et l'allocation de ressources radio (c'est-à-dire des blocs de ressources temps-fréquence et un schéma de modulation et de codage) sont effectués en fonction de la distribution spatiale de l'utilisateur, des conditions de canal, de la demande de service et des capacités d'affichage de l'utilisateur. Les résultats de la simulation montrent que notre solution offre une amélioration de 70 % de la qualité de l'expérience utilisateur et 86 % du nombre de clients servis, par rapport à un système de diffusion multimédia existant.

Los servicios eficientes de difusión y multidifusión multimedia (MBMS) para usuarios heterogéneos en redes celulares implican codificación de video adaptativa, transmisión multimedia en capas, parámetros de transmisión optimizados y definición dinámica del área de difusión. Este documento aborda el MBMS al proponer un enfoque multidimensional para la definición del área de transmisión, que proporciona una solución efectiva a todos los aspectos anteriores. Al utilizar el agrupamiento de K-medias multicriterio, nuestro esquema proporciona a los usuarios altos niveles de calidad de experiencia (QoE) de los servicios multimedia. La codificación de video adaptativa y la asignación de recursos de radio (es decir, bloques de recursos de tiempo-frecuencia y esquema de modulación y codificación) se realizan en función de la distribución espacial del usuario, las condiciones del canal, la solicitud de servicio y las capacidades de visualización del usuario. Los resultados de la simulación muestran que nuestra solución proporciona una mejora del 70% en la QoE del usuario y del 86% en el número de clientes atendidos, en comparación con un esquema de transmisión multimedia existente.

Efficient Multimedia Broadcast and Multicast Services (MBMS) to heterogeneous users in cellular networks imply adaptive video encoding, layered multimedia transmission, optimized transmission parameters, and dynamic broadcast area definition. This paper deals with MBMS by proposing a multi-dimensional approach for broadcast area definition, which provides an effective solution to all of the above aspects. By using multi-criteria K-means clustering, our scheme provides users with high levels of Quality-of-Experience (QoE) of multimedia services. Adaptive video encoding and allocation of radio resources (i.e., time-frequency resource blocks, and modulation and coding scheme) are performed based on user spatial distribution, channel conditions, service request, and user display capabilities. Simulation results show that our solution provides a 70% improvement in user QoE and 86% in number of served customers, as compared to an existing multimedia broadcast scheme.

تعني خدمات البث الفعال للوسائط المتعددة والبث المتعدد (MBMS) للمستخدمين غير المتجانسين في الشبكات الخلوية ترميز الفيديو التكيفي، ونقل الوسائط المتعددة متعدد الطبقات، ومعلمات الإرسال المحسنة، وتعريف منطقة البث الديناميكي. تتناول هذه الورقة MBMS من خلال اقتراح نهج متعدد الأبعاد لتعريف منطقة البث، والذي يوفر حلاً فعالاً لجميع الجوانب المذكورة أعلاه. باستخدام تجميع وسائل K متعددة المعايير، يوفر مخططنا للمستخدمين مستويات عالية من جودة الخبرة (QoE) لخدمات الوسائط المتعددة. يتم تنفيذ ترميز الفيديو التكيفي وتخصيص موارد الراديو (أي كتل موارد التردد الزمني، ونظام التضمين والترميز) بناءً على التوزيع المكاني للمستخدم، وظروف القناة، وطلب الخدمة، وقدرات عرض المستخدم. تُظهر نتائج المحاكاة أن حلنا يوفر تحسينًا بنسبة 70 ٪ في جودة المستخدم و 86 ٪ في عدد العملاء الذين يتم خدمتهم، مقارنةً بمخطط البث متعدد الوسائط الحالي.

Country
Italy
Keywords

Artificial intelligence, Broadcasting; LTE; 5G, Heterogeneous network, Advancements in Video Coding Standards and Techniques, Atomic broadcast, Scalable video coding, Multiuser Diversity, Quality of experience, Mathematical analysis, Multimedia Broadcast Multicast Service, Broadcasting (networking), Wireless Communication and Network Optimization, Engineering, Quality of service, Multicast, Multimedia broadcast and multicast, heterogeneous users, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Scalable Video Coding, Image Quality Assessment in Multimedia Content, Electrical and Electronic Engineering, Encoding (memory), Wireless network, Scheme (mathematics), Coding (social sciences), Computer network, Multi-frequency network, Statistics, High Efficiency Video Coding (HEVC), Computer science, Transmission (telecommunications), Multimedia, Multimedia Broadcast Single Frequency Network, Computer Science, Physical Sciences, Signal Processing, IP Multimedia Subsystem, Wireless, Telecommunications, quality of user experience, Computer Vision and Pattern Recognition, HTTP Adaptive Streaming, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 14
  • 4
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Average
Top 10%
Top 10%
4
14
Green