Powered by OpenAIRE graph
Found an issue? Give us feedback

POLITO

Polytechnic University of Turin
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
606 Projects, page 1 of 122
  • Funder: European Commission Project Code: 101075903
    Overall Budget: 1,499,120 EURFunder Contribution: 1,499,070 EUR

    The lack of fundamental knowledge of the interaction between an acoustic wave and a turbulent boundary layer grazing an acoustically treated surface, such as an acoustic liner, is the cause of unexpected and unphysical results found when performing the acoustic characterization of the sound absorbing surface with inverse eduction methods. This is because, in this field, acoustic and aerodynamic have never been fully coupled. To fill this knowledge gap, the acoustic and hydrodynamic velocities near an acoustically treated surface must be measured. Since it cannot be done only with state-of-the-art experiments, because of hardware and field-of-view limitations, I propose to complement experiments with scale-resolved high-fidelity numerical simulations based on the lattice-Boltzmann very-large-eddy simulation method. Numerical results will be used to explain the physics of the acoustic-flow interaction. Advanced data analysis methodologies will be developed and applied to separate the acoustic-induced velocity near the wall from the hydrodynamic one. At the same time, the numerical database will be used to compare inverse methods, employed to acoustically characterize the sound absorbing surfaces, in order to explain the physical reasons behind the unexpected results, and propose physics-based corrections. Furthermore, by describing the flow-acoustic interaction, it will be possible to model and predict the drag increase caused by the coupling between the acoustic-induced velocity and the free-stream one. My description of the flow-acoustic interaction will solve the scientific debate about the unexpected results and pave the way towards future broadband low-noise low-drag acoustic meta-surfaces to increase propulsion efficiency and reduce noise of future, more sustainable, aircraft engines.

    more_vert
  • Funder: European Commission Project Code: 647473
    Overall Budget: 1,222,500 EURFunder Contribution: 1,222,500 EUR

    We intend to set up a new globalized perspective to tackle water and food security in the 21st century. This issue is intrinsically global as the international trade of massive amounts of food makes societies less reliant on locally available water, and entails large-scale transfers of virtual water (defined as the water needed to produce a given amount of a food commodity). The network of virtual water trade connects a large portion of the global population, with 2800 km3 of virtual water moved around the globe in a year. We provide here definitive indications on the effects of the globalization of (virtual) water on the vulnerability to a water crisis of the global water system. More specifically, we formulate the following research hypotheses: 1) The globalization of (virtual) water resources is a short-term solution to malnourishment, famine, and conflicts, but it also has relevant negative implications for human societies. 2) The virtual water dynamics provide the suitable framework in order to quantitatively relate water-crises occurrence to environmental and socio-economic factors. 3) The risk of catastrophic, global-scale, water crises will increase in the next decades. To test these hypotheses, we will capitalize on the tremendous amount of information embedded in nearly 50 years of available food and virtual water trade data. We will adopt an innovative research approach based on the use of: advanced statistical tools for data verification and uncertainty modeling; methods borrowed from the complex network theory, aimed at analyzing the propagation of failures through the network; multivariate nonlinear analyses, to reproduce the dependence of virtual water on time and on external drivers; multi-state stochastic modeling, to study the effect on the global water system of random fluctuations of the external drivers; and scenario analysis, to predict the future probability of occurrence of water crises.

    visibility4K
    visibilityviews3,564
    downloaddownloads2,742
    Powered by Usage counts
    more_vert
  • Funder: European Commission Project Code: 230845
    more_vert
  • Funder: European Commission Project Code: 892050
    Overall Budget: 171,473 EURFunder Contribution: 171,473 EUR

    The proposed training-through-research aims to develop novel antibacterial materials for medical devices based on Zr-Cu-Ag metallic glasses in the form of microfibers. The major cause of metal implants retrieval is infection due to bacterial biofilm formation on their surface. Many studies have been conducted on the development of antibacterial coating on metallic implants, but evidence has shown numerous drawbacks associated with coatings including their lack of durability. “MAGIC” project proposes the development of Zr-Cu-Ag metallic glasses with generic and intrinsic antibacterial properties which makes them capable of battling antibiotic resistance bacterial infection with no further required coating. Meaningful development of this novel class of intrinsic antibacterial metals requires a fundamental understanding of their antibacterial mechanism which to date is not well-understood. Therefore, “MAGIC” project fundamental ambition is to discover the underlying antibacterial mechanism of innovative Zr-Cu-Ag metallic glasses though a novel interdisciplinary approach, combing materials engineering knowledge of metallic glasses with advanced biological analysis of bacteria. On the engineering side, the main antibacterial contributors “chemical composition” and “surface energy” of Zr-Cu-Ag metallic glass will be modified and controlled; On the biological analysis side, bacterial genetic and metabolic response to these changes will be studied by coupling basic metabolic assays with next-generation sequencing and omics techniques. Furthermore, to facilitate the integration of antibacterial metallic glasses in the medical industry, “MAGIC” has an applied ambition to fabricate the best found Zr-Cu-Ag metallic glass (in terms of chemical composition and surface energy) in the form of microfibers for the very first time. Microfibers have higher surface areas and are easier to be formed into different shapes, offering added value to their applicability in industry.

    visibility12
    visibilityviews12
    downloaddownloads6
    Powered by Usage counts
    more_vert
  • Funder: European Commission Project Code: 299771
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.