search
2,299 Research products

  • 9. Industry and infrastructure

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Andreas Wortmann; Benoit Combemale; Olivier Barais;

    Industry 4.0 is a vision of interconnected manufacturing in which smart, interconnected production systems optimize the complete value-added chain to reduce cost and time-to-market. At the core of Industry 4.0 is the smart factory of the future, whose successful deployment requires solving challenges from many domains. Model-based systems engineering (MBSE) is a key enabler for such complex systems of systems as can be seen by the increased number of related publications in key conferences and journals. This paper aims to characterize the state of the art of MBSE for the smart factory hrough a systematic mapping study on this topic. Adopting a detailed search strategy, 1466 papers were initially identified. Of these, 222 papers were selected and categorized using a particular classification scheme. Hence we present the concerns addressed by modeling community for Industry 4.0, how these are investigated, where these are published, and by whom. The resulting research landscape can help to understand, guide, and compare research in this field. In particular, this paper identifies the Industry 4.0 challenges addressed by the modeling community, but also the challenges that seems to be less investigated.; Le concept d’Industrie 4.0 correspond à une nouvelle façon d’organiser les moyens de production : l’objectif est la mise en place d’usines dites « intelligentes » (« smart factories ») capables d’une plus grande adaptabilité dans la production et d’une allocation plus efficace des ressources, ouvrant ainsi la voie à une nouvelle révolution industrielle. Ses bases technologiques sont l'Internet des objets et les systèmes cyber-physiques. L'ingénierie systèmes dirigée par les modèles (MBSE Model based System Engineering) est une technologie essentielle pour de tel systèmes complexes en témoigne l'augmentation du nombre de publications dans les conférences et les revues clés du domaine. Cet article vise à caractériser l'état de l'art du MBSE pour l'Industrie 4.0 grâce à une étude sur la cartographie systématique du domaine. En adoptant une stratégie de recherche détaillée reproductible, 1466 documents ont été initialement identifiés. De ce nombre, 222 documents ont été sélectionnés et classés selon un schéma de classification particulier. Par cette étude, nous présentons les préoccupations abordées par la communauté de modélisation pour l'Industrie 4.0, comment elles sont étudiées, où celles-ci sont publiées et par qui. Le paysage de recherche qui en résulte peut aider à comprendre, guider et comparer la recherche dans ce domaine. En particulier, ce document identifie les défis spécifiques de notre communauté scientifique, mais aussi les défis qui semblent être moins étudiés.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.inria.fr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://hal.inria.fr/hal-03284...
    Conference object
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1109/models...
    Conference object . 2017
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    32
    citations32
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Kirstin Eva Bosbach; Jan F. Tesch; Uwe C. M. Kirschner;

    Companies nowadays face continuous changes in markets and business logics as consequence of far-reaching technological developments. Viable business models need to be designed as prerequisite of economic success. In history, companies struggled to recognize shifts in the business logic as relevant business potentials. In dynamic environments one key question for companies is how to secure future success. Companies need to be able to recognize and evaluate drivers for change that affect the business model from a strategic perspective and act upon them. This paper provides a practical approach that allows for a better identification and interpretation of innovation potential as business opportunities. A methodology for a more advanced systematization of an early business model innovation phase is introduced. The methodology has been applied and validated in a number of industrial projects and, in this paper, will be illustrated on a simplified case study.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2019
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Garbade, Philipp; Omta, Simon; Fortuin, Francisca;

    Policy makers are becoming increasingly aware of the fact that R&D intensive SMEs play a pivotal role in providing sustainable economic growth by maintaining a high rate of innovation. To compensate for their financial vulnerability, these SMEs increasingly conduct innovation in alliances. This paper aims to explore the impact of different alliance characteristics on the performance of Dutch biotechnology SMEs. The conceptual model was tested using a sample of 18 biotech SMEs reporting about 40 alliances. The main findings indicate that alliance performance is positively related to the level of complementarity, the cognitive distance and tacit knowledge transfer by the human resources exchanges. Policy makers are recommended to support innovation alliances by providing the infrastructure in which alliances can flourish, e.g. through stimulating the foundation of cluster organizations that can function as innovation brokers. These cluster organizations can provide network formation, demand articulation, internationalization and innovation process support to their member companies and can act as a go-between among alliance partners. As part of the innovation process support activities, they can organize special workshops for biotech SMEs on how to successfully behave in an innovation alliance. Bio-based and Applied Economics, Vol 2 No 1 (2013): Agricultural policy and the wider policy context: evaluation issues, practices and tools

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bio-based and Applie...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Marian Rizov; Patrick Paul Walsh;

    The focus of the paper is on evaluating the productivity gap between rural and urban locations in the UK using micro data. We build a structural model of the unobservable productivity emphasising the link between productivity and spatial density of economic activity and adapt the semi-parametric estimation approach proposed in Olley and Pakes (1996) to estimate the parameters of production functions at firm level, within 4-digit UK manufacturing industries, for the period 1997 - 2001. We allow market structure to differ by endogenous export status and location choices and model productivity as a second-order Markov process which greatly enhances our ability to obtain unbiased and consistent estimates of TFP measures at firm level. We aggregate the firm TFPs by location category following the 2004 DEFRA definition of rural and find that aggregate productivity systematically differs across urban, rural less sparse and rural sparse locations as the magnitudes of the differentials are 13.2 percent and 18.0 percent, respectively. Our results are in line with several recent studies. Next, we decompose aggregate productivity into productivity index and industry composition index. The productivity index is the highest in urban locations suggesting that productivity is strongly influenced by density of economic activity and proximity to economic mass. Because industry composition index is positively correlated with productivity index it is evident that locations with high productivity are also characterised by industrial structure enhancing productivity. Further, analysing changes in the decomposition indexes over two periods, before and after implementation of the Euro by the UK main trading partners, reveals substantial heterogeneity in responses across location categories under increased competitive pressure. The main finding is that there is a tendency of rural sparse locations catching up with the urban and rural less sparse location categories in terms of aggregate productivity over the period of analysis. We also find evidence that increased competitive pressure as a result of changes in trade conditions after implementation of the Euro by the UK's main trading partners has acted as a substitute for the role of density of economic activity in enhancing industry composition, especially in rural sparse locations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2010
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    EconStor
    Conference object . 2010
    Data sources: EconStor
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Regional Studies
    Article . 2011
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2010
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads66
    Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ana Correia Simões; Filipe Ferreira; António Almeida; Ricardo Zimmermann; +2 Authors

    International audience; Small and medium-sized enterprises (SMEs) in Europe are conscious that their competitive position depends on their success to embrace digitalization challenges. However, some decision-makers in companies discard digital transformation because they do not understand how it can be incorporated into their businesses. Therefore, academia, research centres, and technological clusters are responsible for building the infrastructures and providing the support and the training that will progressively change this mindset. This paper aims to report an experience on designing a training program to train the trainers under the digital transformation topic. To define strategies to understand better the companies (and professionals) needs and motivations and the requisites to deliver the training course, the focus group methodology was applied. In this paper, we present a training program methodology and structure that intend to respond to industrial requests and, in this way to accelerate the digital transformation of companies, especially SMEs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal-emse.ccs...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://hal-emse.ccsd.cnrs.fr/...
    Part of book or chapter of book
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2021
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Kaj-Kolja Kleineberg; Dirk Helbing;

    A multidimensional financial system could provide benefits for individuals, companies, and states. Instead of top-down control, which is destined to eventually fail in a hyperconnected world, a bottom-up creation of value can unleash creative potential and drive innovations. Multiple currency dimensions can represent different externalities and thus enable the design of incentives and feedback mechanisms that foster the ability of complex dynamical systems to self-organize and lead to a more resilient society and sustainable economy. Modern information and communication technologies play a crucial role in this process, as Web 2.0 and online social networks promote cooperation and collaboration on unprecedented scales. Within this contribution, we discuss how one dimension of a multidimensional currency system could represent socio-digital capital (Social Bitcoins) that can be generated in a bottom-up way by individuals who perform search and navigation tasks in a future version of the digital world. The incentive to mine Social Bitcoins could sustain digital diversity, which mitigates the risk of totalitarian control by powerful monopolies of information and can create new business opportunities needed in times where a large fraction of current jobs is estimated to disappear due to computerisation. Contribution to EPJ-ST special issue on 'Can economics be a Physical Science?', edited by S. Sinha, A. S. Chakrabarti & M. Mitra

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SSRN Electronic Journal
    Article . 2016
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • Babi Almenar, Javier;

    The recognition of nature in the resolution of societal challenges has been growing in relevance. This recognition has been associated with the development of new concepts from science and policy such as natural capital, ecosystem services, green infrastructure, and more recently Nature-Based Solutions (NBS). NBS intends to address societal challenges in an effective and adaptive form providing economic, social, and environmental benefits. The overall aim of this PhD thesis is to develop an environmental and economic assessment of NBS for highly urbanised territories based on rationales and models underpinning ecosystem services, urban/landscape ecology, and life cycle thinking approaches. This combined evaluation approach would help to better understand if NBS are cost-effective or not. The aim is developed according to four specific objectives. The first objective corresponds to the characterisation of NBS in relation to urban contexts and the problematics that they can help to address or mitigate. To achieve this objective a critical review on the study of the relationship between NBS, ecosystem services (ES) and urban challenges (UC) was developed. As a main output, a graph of plausible cause-effect relationships between NBS, ES and UC is obtained. The graph represents a first step to support sustainable urban planning, moving from problems (i.e. urban challenges) to actions (i.e. NBS) to resolutions (i.e. ES). The second objective corresponds to the definition of an adequate set of biophysical and monetary assessment methods and indicators to evaluate the value of NBS in urbanised contexts. To achieve this objective, a review of existing methods on ecosystem services valuation, life cycle cost analysis and life-cycle assessment are developed. The review takes into account specific constraints such as easiness to use and availability of data. At the end, potential methods and indicators were selected, which will be later integrated in the combined assessment framework. The third objective corresponds to the design of a combined assessment framework integrating methods from life cycle assessment, landscape/urban ecology and ecosystem services that quantifies the environmental and economic value of NBS informing about the cost-effectiveness of its entire life cycle. To achieve this objective, a conceptual framework is developed. From it, a system dynamics model of ecosystem (dis)services is developed and coupled with a life cycle assessment method. The combined evaluation is tested with a relevant NBS type (i.e. urban forest) in a case study in the metropolitan area of Madrid. The fourth objective is the development of a decision support (DSS) tool that integrates the assessment framework as part of iterative design processes in urban planning and landscape design. The DSS intends to enhance the interrelation between science, policy and planning/design. To achieve this objective a user-friendly web-based prototype DSS on NBS, called NBenefit$�, is developed. The prototype DSS provides the user a simple form of quantifying the provision of multiple ES and costs over the entire life cycle (implementation, operational life, and end-of-life) of NBS. This thesis contributed to the characterisation of NBS and its environmental and economic assessment to inform urban planning and landscape design processes, allowing decisions that are more informed.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
  • Sonja Grigoleit, Larissa Müller;

    SONNETS pursues the aim to develop a roadmap of necessary technological and implementation activities to modernize the public sector with emerging ICTs and addressing thereby related societal challenges. Methodologically, SONNETS follows a technology roadmapping approach which is based, on the one side, on societal and public sector needs and, on the other side, on the opportunities of emerging ICTs. Thus, SONNETS incorporates the general idea of the European Industrial Research Management Association (EIRMA) [1] approach of including both ‘market-pull’ as well as ‘technology-push’ aspects into the development of the roadmap. The development of the roadmap itself contains both elements of the EIRMA [1] approach as well as of the T-Plan process [2] and has further been adapted to the needs of SONNETS. Overall, the SONNETS roadmap development follows a 3-step approach (plus a preparing one, in which the technologies and needs have been identified): 0. Identification of emerging ICTs with the potential to transform and modernize the public sector and also identification of societal, business and public sector needs  this has been done by applying the SONNETS innovation identification framework in WP2 and WP3 1. Analysis of emerging ICTs and trends (identified in WP3): e.g. regarding their technological readiness level, current research activities, actors in this area and possible obstacles which could hinder a successful implementation into the public sector 2. Identification of gaps and research needs: Each societal and public sector need (identified in WP2) has been assigned to one or more emerging ICTs which could help to satisfy the respective need. For each of these technology-need pairs the gap between the technology as it is now and a fully implemented version in the public sector has been described. 3. Development of the roadmap: This development of the roadmap itself has been performed by following another 3-step approach: I. Matching of emerging ICTs and societal or public sector needs on a 1:1 base (each need is assigned to only one technology). This matching has been validated during an experts’ workshop. II. Validating the activities which are necessary to implement the emerging ICTs successfully in the public sector with the aim to satisfy the specific assigned societal or public sector need during an experts workshop. III. Deciding on the content of the roadmaps: The roadmaps have subsequently been filled by using the previous results of SONNETS, as well as further literature reviews (e.g. from other EU research projects, intergovernmental organisations etc.), and the feedback received during the validation activities. This exercise has shown that the emerging ICTs identified during the course of SONNETS which could potentially play a major role to meet the assigned societal or public sector needs are already on a very advanced technological level. Even more, several applications or services are already in use somewhere within or outside Europe - in the public sector itself or with a comparable function in another domain. Thus, the roadmaps to implement these technologies in the public sector contain only adaptions, modifications or improvements of these technologies or non-technological activities like, e.g. development of training, process-oriented issues, necessary infrastructure, promotion of applications, development of standards, and dealing with ethical, legal or societal issues. Thus, the bottleneck of innovating the public sector is not the technological development - it is the implementation itself – including the adaption to the specific necessities of the public sector and the consideration of the complex process-oriented, socio-economic and ethical issues. The main part of this deliverable contains the summarized roadmaps of the 23 identified emerging ICTs and trends, including the recommended technological and non-technological activities necessary to implement these emerging technologies in the public sector with the aim to satisfy societal and public sector needs. The full roadmaps are presented in the different standalone flyers attached in this publication.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
  • João Barata; Francisco Silva; Marisa Almeida;

    Industry 4.0 presents new challenges for traditional sectors of the economy, for example, the production of ceramic products. This chapter reveals how traditional ceramic industries can (1) assess, (2) plan, and (3) execute Industry 4.0 adoption. The findings are based on the Portuguese ceramic sector. Three interrelated dimensions of the fourth industrial revolution are studied, namely, (1) digital ecosystems, (2) security and safety, and (3) digital sustainability. Industry 4.0 is not restricted to high-tech products and cannot be addressed by one-size-fits-all solutions. Moreover, it requires cooperation within business ecosystems. The authors propose a model for Ceramic Industry 4.0 and accessible guidelines for managers involved in global supply chains. This chapter suggests emergent research opportunities for (1) sectorial maturity models, (2) data quality and regulatory compliance, (3) cyber-security and risk management, and (4) an integrated vision of sustainability in the digital era.

    https://doi.org/10.4...arrow_drop_down
    https://doi.org/10.4018/978-1-...
    Part of book or chapter of book . 2021
    Data sources: Crossref
    https://doi.org/10.4018/978-1-...
    Part of book or chapter of book . 2019
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Lene Lange; Kevin O. Connor; Sigurjon Arason; Uffe Bundgård-Jørgensen; +17 Authors

    This paper gives an overview of development of the EU-bioeconomy, 2014-2020. The Vision of the new Circular Bio-based Economy, CBE is presented: Unlocking the full potential of all types of sustainably sourced biomass, crop residues, industrial side-streams, and wastes by transforming it into value-added products. The resulting product portfolio consists of a wide spectrum of value-added products, addressing societal and consumer needs. Food and feed, bio-based chemicals, materials, healthpromoting products; and bio-based fuels. The pillars of CBE are described, including biotechnology, microbial production, enzyme technology, green chemistry, integrated physical/chemical processing, policies, conducive framework conditions and public private partnerships. Drivers of CBE are analyzed: Biomass supply, biorefineries, value chain clusters, rural development, farmers, foresters and mariners; urgent need for climate change mitigation and adaptation, and stopping biodiversity loss. Improved framework conditions can be drivers but also obstacles if not updated to the era of circularity. Key figures, across the entire BBI-JU project portfolio (20142020) are provided, including expansion into biomass feedstocks, terrestrial and aquatic, and an impressive broadening of bio-based product portfolio, including higher-value, healthpromoting products for man, animal, plants and soil. Parallel to this, diversification of industrial segments and types of funding instruments developed, reflecting industrial needs and academic research involvement. Impact assessment is highlighted. A number of specific recommendations are given; e.g., including international win/win CBEcollaborations, as e.g., expanding African EU collaboration into CBE. In contrast to fossil resources biological resources are found worldwide. In its outset, circular biobased economy, can be implemented all over, in a just manner, not the least stimulating rural development This study received funding only for covering the production costs (carried by the public BBI-JU secretariat). info:eu-repo/semantics/publishedVersion

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade do Minh...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2021
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    44
    citations44
    popularitySubstantial
    influenceAverage
    impulseSubstantial
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads8
    Powered by BIP!
2,299 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Andreas Wortmann; Benoit Combemale; Olivier Barais;

    Industry 4.0 is a vision of interconnected manufacturing in which smart, interconnected production systems optimize the complete value-added chain to reduce cost and time-to-market. At the core of Industry 4.0 is the smart factory of the future, whose successful deployment requires solving challenges from many domains. Model-based systems engineering (MBSE) is a key enabler for such complex systems of systems as can be seen by the increased number of related publications in key conferences and journals. This paper aims to characterize the state of the art of MBSE for the smart factory hrough a systematic mapping study on this topic. Adopting a detailed search strategy, 1466 papers were initially identified. Of these, 222 papers were selected and categorized using a particular classification scheme. Hence we present the concerns addressed by modeling community for Industry 4.0, how these are investigated, where these are published, and by whom. The resulting research landscape can help to understand, guide, and compare research in this field. In particular, this paper identifies the Industry 4.0 challenges addressed by the modeling community, but also the challenges that seems to be less investigated.; Le concept d’Industrie 4.0 correspond à une nouvelle façon d’organiser les moyens de production : l’objectif est la mise en place d’usines dites « intelligentes » (« smart factories ») capables d’une plus grande adaptabilité dans la production et d’une allocation plus efficace des ressources, ouvrant ainsi la voie à une nouvelle révolution industrielle. Ses bases technologiques sont l'Internet des objets et les systèmes cyber-physiques. L'ingénierie systèmes dirigée par les modèles (MBSE Model based System Engineering) est une technologie essentielle pour de tel systèmes complexes en témoigne l'augmentation du nombre de publications dans les conférences et les revues clés du domaine. Cet article vise à caractériser l'état de l'art du MBSE pour l'Industrie 4.0 grâce à une étude sur la cartographie systématique du domaine. En adoptant une stratégie de recherche détaillée reproductible, 1466 documents ont été initialement identifiés. De ce nombre, 222 documents ont été sélectionnés et classés selon un schéma de classification particulier. Par cette étude, nous présentons les préoccupations abordées par la communauté de modélisation pour l'Industrie 4.0, comment elles sont étudiées, où celles-ci sont publiées et par qui. Le paysage de recherche qui en résulte peut aider à comprendre, guider et comparer la recherche dans ce domaine. En particulier, ce document identifie les défis spécifiques de notre communauté scientifique, mais aussi les défis qui semblent être moins étudiés.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.inria.fr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://hal.inria.fr/hal-03284...
    Conference object
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1109/models...
    Conference object . 2017
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    32
    citations32
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Kirstin Eva Bosbach; Jan F. Tesch; Uwe C. M. Kirschner;

    Companies nowadays face continuous changes in markets and business logics as consequence of far-reaching technological developments. Viable business models need to be designed as prerequisite of economic success. In history, companies struggled to recognize shifts in the business logic as relevant business potentials. In dynamic environments one key question for companies is how to secure future success. Companies need to be able to recognize and evaluate drivers for change that affect the business model from a strategic perspective and act upon them. This paper provides a practical approach that allows for a better identification and interpretation of innovation potential as business opportunities. A methodology for a more advanced systematization of an early business model innovation phase is introduced. The methodology has been applied and validated in a number of industrial projects and, in this paper, will be illustrated on a simplified case study.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2019
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Garbade, Philipp; Omta, Simon; Fortuin, Francisca;

    Policy makers are becoming increasingly aware of the fact that R&D intensive SMEs play a pivotal role in providing sustainable economic growth by maintaining a high rate of innovation. To compensate for their financial vulnerability, these SMEs increasingly conduct innovation in alliances. This paper aims to explore the impact of different alliance characteristics on the performance of Dutch biotechnology SMEs. The conceptual model was tested using a sample of 18 biotech SMEs reporting about 40 alliances. The main findings indicate that alliance performance is positively related to the level of complementarity, the cognitive distance and tacit knowledge transfer by the human resources exchanges. Policy makers are recommended to support innovation alliances by providing the infrastructure in which alliances can flourish, e.g. through stimulating the foundation of cluster organizations that can function as innovation brokers. These cluster organizations can provide network formation, demand articulation, internationalization and innovation process support to their member companies and can act as a go-between among alliance partners. As part of the innovation process support activities, they can organize special workshops for biotech SMEs on how to successfully behave in an innovation alliance. Bio-based and Applied Economics, Vol 2 No 1 (2013): Agricultural policy and the wider policy context: evaluation issues, practices and tools

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bio-based and Applie...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Marian Rizov; Patrick Paul Walsh;

    The focus of the paper is on evaluating the productivity gap between rural and urban locations in the UK using micro data. We build a structural model of the unobservable productivity emphasising the link between productivity and spatial density of economic activity and adapt the semi-parametric estimation approach proposed in Olley and Pakes (1996) to estimate the parameters of production functions at firm level, within 4-digit UK manufacturing industries, for the period 1997 - 2001. We allow market structure to differ by endogenous export status and location choices and model productivity as a second-order Markov process which greatly enhances our ability to obtain unbiased and consistent estimates of TFP measures at firm level. We aggregate the firm TFPs by location category following the 2004 DEFRA definition of rural and find that aggregate productivity systematically differs across urban, rural less sparse and rural sparse locations as the magnitudes of the differentials are 13.2 percent and 18.0 percent, respectively. Our results are in line with several recent studies. Next, we decompose aggregate productivity into productivity index and industry composition index. The productivity index is the highest in urban locations suggesting that productivity is strongly influenced by density of economic activity and proximity to economic mass. Because industry composition index is positively correlated with productivity index it is evident that locations with high productivity are also characterised by industrial structure enhancing productivity. Further, analysing changes in the decomposition indexes over two periods, before and after implementation of the Euro by the UK main trading partners, reveals substantial heterogeneity in responses across location categories under increased competitive pressure. The main finding is that there is a tendency of rural sparse locations catching up with the urban and rural less sparse location categories in terms of aggregate productivity over the period of analysis. We also find evidence that increased competitive pressure as a result of changes in trade conditions after implementation of the Euro by the UK's main trading partners has acted as a substitute for the role of density of economic activity in enhancing industry composition, especially in rural sparse locations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2010
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    EconStor
    Conference object . 2010
    Data sources: EconStor
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Regional Studies
    Article . 2011
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2010
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads66
    Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ana Correia Simões; Filipe Ferreira; António Almeida; Ricardo Zimmermann; +2 Authors

    International audience; Small and medium-sized enterprises (SMEs) in Europe are conscious that their competitive position depends on their success to embrace digitalization challenges. However, some decision-makers in companies discard digital transformation because they do not understand how it can be incorporated into their businesses. Therefore, academia, research centres, and technological clusters are responsible for building the infrastructures and providing the support and the training that will progressively change this mindset. This paper aims to report an experience on designing a training program to train the trainers under the digital transformation topic. To define strategies to understand better the companies (and professionals) needs and motivations and the requisites to deliver the training course, the focus group methodology was applied. In this paper, we present a training program methodology and structure that intend to respond to industrial requests and, in this way to accelerate the digital transformation of companies, especially SMEs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal-emse.ccs...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://hal-emse.ccsd.cnrs.fr/...
    Part of book or chapter of book
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2021
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Kaj-Kolja Kleineberg; Dirk Helbing;

    A multidimensional financial system could provide benefits for individuals, companies, and states. Instead of top-down control, which is destined to eventually fail in a hyperconnected world, a bottom-up creation of value can unleash creative potential and drive innovations. Multiple currency dimensions can represent different externalities and thus enable the design of incentives and feedback mechanisms that foster the ability of complex dynamical systems to self-organize and lead to a more resilient society and sustainable economy. Modern information and communication technologies play a crucial role in this process, as Web 2.0 and online social networks promote cooperation and collaboration on unprecedented scales. Within this contribution, we discuss how one dimension of a multidimensional currency system could represent socio-digital capital (Social Bitcoins) that can be generated in a bottom-up way by individuals who perform search and navigation tasks in a future version of the digital world. The incentive to mine Social Bitcoins could sustain digital diversity, which mitigates the risk of totalitarian control by powerful monopolies of information and can create new business opportunities needed in times where a large fraction of current jobs is estimated to disappear due to computerisation. Contribution to EPJ-ST special issue on 'Can economics be a Physical Science?', edited by S. Sinha, A. S. Chakrabarti & M. Mitra

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SSRN Electronic Journal
    Article . 2016
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • Babi Almenar, Javier;

    The recognition of nature in the resolution of societal challenges has been growing in relevance. This recognition has been associated with the development of new concepts from science and policy such as natural capital, ecosystem services, green infrastructure, and more recently Nature-Based Solutions (NBS). NBS intends to address societal challenges in an effective and adaptive form providing economic, social, and environmental benefits. The overall aim of this PhD thesis is to develop an environmental and economic assessment of NBS for highly urbanised territories based on rationales and models underpinning ecosystem services, urban/landscape ecology, and life cycle thinking approaches. This combined evaluation approach would help to better understand if NBS are cost-effective or not. The aim is developed according to four specific objectives. The first objective corresponds to the characterisation of NBS in relation to urban contexts and the problematics that they can help to address or mitigate. To achieve this objective a critical review on the study of the relationship between NBS, ecosystem services (ES) and urban challenges (UC) was developed. As a main output, a graph of plausible cause-effect relationships between NBS, ES and UC is obtained. The graph represents a first step to support sustainable urban planning, moving from problems (i.e. urban challenges) to actions (i.e. NBS) to resolutions (i.e. ES). The second objective corresponds to the definition of an adequate set of biophysical and monetary assessment methods and indicators to evaluate the value of NBS in urbanised contexts. To achieve this objective, a review of existing methods on ecosystem services valuation, life cycle cost analysis and life-cycle assessment are developed. The review takes into account specific constraints such as easiness to use and availability of data. At the end, potential methods and indicators were selected, which will be later integrated in the combined assessment framework. The third objective corresponds to the design of a combined assessment framework integrating methods from life cycle assessment, landscape/urban ecology and ecosystem services that quantifies the environmental and economic value of NBS informing about the cost-effectiveness of its entire life cycle. To achieve this objective, a conceptual framework is developed. From it, a system dynamics model of ecosystem (dis)services is developed and coupled with a life cycle assessment method. The combined evaluation is tested with a relevant NBS type (i.e. urban forest) in a case study in the metropolitan area of Madrid. The fourth objective is the development of a decision support (DSS) tool that integrates the assessment framework as part of iterative design processes in urban planning and landscape design. The DSS intends to enhance the interrelation between science, policy and planning/design. To achieve this objective a user-friendly web-based prototype DSS on NBS, called NBenefit$�, is developed. The prototype DSS provides the user a simple form of quantifying the provision of multiple ES and costs over the entire life cycle (implementation, operational life, and end-of-life) of NBS. This thesis contributed to the characterisation of NBS and its environmental and economic assessment to inform urban planning and landscape design processes, allowing decisions that are more informed.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
  • Sonja Grigoleit, Larissa Müller;

    SONNETS pursues the aim to develop a roadmap of necessary technological and implementation activities to modernize the public sector with emerging ICTs and addressing thereby related societal challenges. Methodologically, SONNETS follows a technology roadmapping approach which is based, on the one side, on societal and public sector needs and, on the other side, on the opportunities of emerging ICTs. Thus, SONNETS incorporates the general idea of the European Industrial Research Management Association (EIRMA) [1] approach of including both ‘market-pull’ as well as ‘technology-push’ aspects into the development of the roadmap. The development of the roadmap itself contains both elements of the EIRMA [1] approach as well as of the T-Plan process [2] and has further been adapted to the needs of SONNETS. Overall, the SONNETS roadmap development follows a 3-step approach (plus a preparing one, in which the technologies and needs have been identified): 0. Identification of emerging ICTs with the potential to transform and modernize the public sector and also identification of societal, business and public sector needs  this has been done by applying the SONNETS innovation identification framework in WP2 and WP3 1. Analysis of emerging ICTs and trends (identified in WP3): e.g. regarding their technological readiness level, current research activities, actors in this area and possible obstacles which could hinder a successful implementation into the public sector 2. Identification of gaps and research needs: Each societal and public sector need (identified in WP2) has been assigned to one or more emerging ICTs which could help to satisfy the respective need. For each of these technology-need pairs the gap between the technology as it is now and a fully implemented version in the public sector has been described. 3. Development of the roadmap: This development of the roadmap itself has been performed by following another 3-step approach: I. Matching of emerging ICTs and societal or public sector needs on a 1:1 base (each need is assigned to only one technology). This matching has been validated during an experts’ workshop. II. Validating the activities which are necessary to implement the emerging ICTs successfully in the public sector with the aim to satisfy the specific assigned societal or public sector need during an experts workshop. III. Deciding on the content of the roadmaps: The roadmaps have subsequently been filled by using the previous results of SONNETS, as well as further literature reviews (e.g. from other EU research projects, intergovernmental organisations etc.), and the feedback received during the validation activities. This exercise has shown that the emerging ICTs identified during the course of SONNETS which could potentially play a major role to meet the assigned societal or public sector needs are already on a very advanced technological level. Even more, several applications or services are already in use somewhere within or outside Europe - in the public sector itself or with a comparable function in another domain. Thus, the roadmaps to implement these technologies in the public sector contain only adaptions, modifications or improvements of these technologies or non-technological activities like, e.g. development of training, process-oriented issues, necessary infrastructure, promotion of applications, development of standards, and dealing with ethical, legal or societal issues. Thus, the bottleneck of innovating the public sector is not the technological development - it is the implementation itself – including the adaption to the specific necessities of the public sector and the consideration of the complex process-oriented, socio-economic and ethical issues. The main part of this deliverable contains the summarized roadmaps of the 23 identified emerging ICTs and trends, including the recommended technological and non-technological activities necessary to implement these emerging technologies in the public sector with the aim to satisfy societal and public sector needs. The full roadmaps are presented in the different standalone flyers attached in this publication.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
  • João Barata; Francisco Silva; Marisa Almeida;

    Industry 4.0 presents new challenges for traditional sectors of the economy, for example, the production of ceramic products. This chapter reveals how traditional ceramic industries can (1) assess, (2) plan, and (3) execute Industry 4.0 adoption. The findings are based on the Portuguese ceramic sector. Three interrelated dimensions of the fourth industrial revolution are studied, namely, (1) digital ecosystems, (2) security and safety, and (3) digital sustainability. Industry 4.0 is not restricted to high-tech products and cannot be addressed by one-size-fits-all solutions. Moreover, it requires cooperation within business ecosystems. The authors propose a model for Ceramic Industry 4.0 and accessible guidelines for managers involved in global supply chains. This chapter suggests emergent research opportunities for (1) sectorial maturity models, (2) data quality and regulatory compliance, (3) cyber-security and risk management, and (4) an integrated vision of sustainability in the digital era.

    https://doi.org/10.4...arrow_drop_down
    https://doi.org/10.4018/978-1-...
    Part of book or chapter of book . 2021
    Data sources: Crossref
    https://doi.org/10.4018/978-1-...
    Part of book or chapter of book . 2019
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Lene Lange; Kevin O. Connor; Sigurjon Arason; Uffe Bundgård-Jørgensen; +17 Authors

    This paper gives an overview of development of the EU-bioeconomy, 2014-2020. The Vision of the new Circular Bio-based Economy, CBE is presented: Unlocking the full potential of all types of sustainably sourced biomass, crop residues, industrial side-streams, and wastes by transforming it into value-added products. The resulting product portfolio consists of a wide spectrum of value-added products, addressing societal and consumer needs. Food and feed, bio-based chemicals, materials, healthpromoting products; and bio-based fuels. The pillars of CBE are described, including biotechnology, microbial production, enzyme technology, green chemistry, integrated physical/chemical processing, policies, conducive framework conditions and public private partnerships. Drivers of CBE are analyzed: Biomass supply, biorefineries, value chain clusters, rural development, farmers, foresters and mariners; urgent need for climate change mitigation and adaptation, and stopping biodiversity loss. Improved framework conditions can be drivers but also obstacles if not updated to the era of circularity. Key figures, across the entire BBI-JU project portfolio (20142020) are provided, including expansion into biomass feedstocks, terrestrial and aquatic, and an impressive broadening of bio-based product portfolio, including higher-value, healthpromoting products for man, animal, plants and soil. Parallel to this, diversification of industrial segments and types of funding instruments developed, reflecting industrial needs and academic research involvement. Impact assessment is highlighted. A number of specific recommendations are given; e.g., including international win/win CBEcollaborations, as e.g., expanding African EU collaboration into CBE. In contrast to fossil resources biological resources are found worldwide. In its outset, circular biobased economy, can be implemented all over, in a just manner, not the least stimulating rural development This study received funding only for covering the production costs (carried by the public BBI-JU secretariat). info:eu-repo/semantics/publishedVersion

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade do Minh...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2021
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    44
    citations44
    popularitySubstantial
    influenceAverage
    impulseSubstantial
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads8
    Powered by BIP!
Send a message
How can we help?
We usually respond in a few hours.