Downloads provided by UsageCounts
doi: 10.1071/wf9960177
A numerical atmospheric model is coupled with a simple dry eucalyptus forest fire model to create a wildfire simulation model. This is used to show how certain atmospheric conditions can lead to commonly observed forest fire behavior. Using short line fires, simulations show that with moderate winds, the fire line interacts with the updraft ahead of it causing the fire line to curve forward into a conical shape. Other experiments show that when ambient winds change with height, a pair of rotating updrafts at the curved fire front can touch down within the fire and break up the fire line. We also demonstrate 'dynamic fingering', in which the rotating columns near the fire front intensify to tornado strength and can result in rapid and strong increases in the fire spread rate.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 99 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 94 | |
| downloads | 21 |

Views provided by UsageCounts
Downloads provided by UsageCounts