Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Gutenberg Open Scien...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Physics Letters
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Magneto-ionic modulation of the interlayer exchange interaction in synthetic antiferromagnets

Authors: Maria-Andromachi Syskaki; Takaaki Dohi; Beatrice Bednarz; Sergei Olegovich Filnov; Sergey Alexeyevich Kasatikov; Mona Bhukta; Alevtina Smekhova; +8 Authors

Magneto-ionic modulation of the interlayer exchange interaction in synthetic antiferromagnets

Abstract

The electric-field control of magnetism is a highly promising and potentially effective approach for realizing energy-efficient applications. Recent interest has focused on the magneto-ionic effect in synthetic antiferromagnets, driven by its potential to enable high-density data storage devices with ultra-low power consumption. However, the underlying mechanism responsible for the magneto-ionic effect on the interlayer exchange coupling remains elusive. In our work, we find that the modulation of the interlayer exchange coupling is highly sensitive to the thickness of the ferromagnetic layer. We have identified that the changes in the interlayer exchange coupling induced by the gate voltage can be associated with the magneto-ionic effects on the top ferromagnetic layer of the synthetic antiferromagnet. The direct contact between the high ion mobility oxide and the top ferromagnetic layer plays a crucial role in facilitating these effects, largely modifying the anisotropy of the layers. Our findings highlight the important role of magneto-ionic control over the properties of the top ferromagnetic layer in governing the observed modifications in the interlayer exchange coupling. This study provides crucial insight into the intricate interplay between stack structure and magneto-ionic effect on magnetic properties in synthetic antiferromagnetic thin film systems.

Keywords

530 Physics, ddc:530, 530 Physik, 530

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green