Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neutrino-nucleus CC0π cross-section tuning in GENIE v3

Authors: Júlia Tena-Vidal; Costas Andreopoulos; Adi Ashkenazi; Joshua Barrow; Steven Dytman; Hugh Gallagher; Alfonso Andres Garcia Soto; +16 Authors

Neutrino-nucleus CC0π cross-section tuning in GENIE v3

Abstract

This article summarizes the state of the art of $ν_μ$ and $\barν_μ$ CC0$π$ cross-section measurements on carbon and argon and discusses the relevant nuclear models, parametrizations and uncertainties in GENIE v3. The CC0$π$ event topology is common in experiments at a few-GeV energy range. Although its main contribution comes from quasi-elastic interactions, this topology is still not well understood. The GENIE global analysis framework is exploited to analyze CC0$π$ datasets from MiniBooNE, T2K and MINERvA. A partial tune for each experiment is performed, providing a common base for the discussion of tensions between datasets. The results offer an improved description of nuclear CC0$π$ datasets as well as data-driven uncertainties for each experiment. This work is a step towards a GENIE global tune that improves our understanding of neutrino interactions on nuclei. It follows from earlier GENIE work on the analysis of neutrino scattering datasets on hydrogen and deuterium.

Country
France
Keywords

topology, interaction, FOS: Physical sciences, nuclear model, KAMIOKANDE, 530, MINERvA, neutrino, High Energy Physics - Phenomenology (hep-ph), deuterium, neutrino nucleus, J-PARC Lab, carbon, scattering, nucleus, parametrization, 500, tension, High Energy Physics - Phenomenology, BooNE, hydrogen, [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], argon

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid