
doi: 10.1007/11604686_19
In this paper, we establish structural properties of cographs which enable us to present an algorithm which, for a cograph G and a non-edge xy (i.e., two non-adjacent vertices x and y) of G, finds the minimum number of edges that need to be added to the edge set of G such that the resulting graph is a cograph and contains the edge xy. The motivation for this problem comes from algorithms for the dynamic recognition and online maintenance of graphs; the proposed algorithm could be a suitable addition to the algorithm of Shamir and Sharan [13] for the online maintenance of cographs. The proposed algorithm runs in time linear in the size of the input graph and requires linear space.
graphs, optimization problems, cographs, recognition algorithm, connected components, co-connected components, cotrees, perfect graphs
graphs, optimization problems, cographs, recognition algorithm, connected components, co-connected components, cotrees, perfect graphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
