Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Differen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article . 2017
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2017
Data sources: zbMATH Open
https://dx.doi.org/10.60692/nq...
Other literature type . 2017
Data sources: Datacite
https://dx.doi.org/10.60692/x2...
Other literature type . 2017
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A generalized Lyapunov-type inequality in the frame of conformable derivatives

عدم المساواة المعمم من نوع Lyapunov في إطار المشتقات المطابقة
Authors: Thabet Abdeljawad; Jehad Alzabut; Fahd Jarad;

A generalized Lyapunov-type inequality in the frame of conformable derivatives

Abstract

Nous prouvons une inégalité généralisée de type Lyapunov pour un problème de valeur limite conformable (BVP) d'ordre $ \alpha \in (1,2]$ . En effet, il est montré que si le problème de valeur limite $$ \bigl(\textbf{T}_{\alpha }^{c} x\bigr) (t)+r(t)x(t)=0,\quad t \in (c,d), x(c)=x(d)=0 $$ a une solution non triviale, où r est une fonction continue à valeur réelle sur $[ c,d]$ , alors 1 $$ \int_{c}^{d} \bigl vert\ r(t) \bigr\ vert \,dt> \frac{\alpha^{\alpha }}{(\alpha -1)^{\alpha -1}(d-c)^{ \alpha -1}}. $$ De plus, une inégalité de type Lyapunov de la forme 2 $$ \int_{c}^{d} \bigl\vert r(t) \bigr\ vert \,dt> \frac{3\alpha -1}{(d-c)^{2\alpha -1}} \biggl( \frac{3 \alpha -1}{2\alpha -1} \biggr) ^{\frac{2\alpha -1}{\alpha }},\quad \frac{1}{2}< \alpha \leq 1, $$ est obtenue pour une BVP conformable séquentielle. Quelques exemples sont donnés et une application au problème de valeur propre de Sturm-Liouville conformable est analysée.

Demostramos una desigualdad generalizada de tipo Lyapunov para un problema de valor límite conformable (BVP) de orden $\alpha \in (1,2]$ . De hecho, se demuestra que si el problema del valor límite $$ \bigl(\textbf{T}_{\alpha }^{c} x\bigr) (t)+r(t)x(t)=0,\quad t \in (c,d), x(c)=x(d)=0 $$ tiene una solución no trivial, donde r es una función continua de valor real en $[c,d]$ , entonces 1 $$ \int_{c}^{d} \bigl\vert r(t) \bigr\vert \,dt> \frac{\alpha^{\alpha }}{(\alpha -1)^{\alpha -1}(d-c)^{ \alpha -1}}. $$ Además, se obtiene una desigualdad de tipo Lyapunov de la forma 2 $$ \int_{c}^{d} \bigl\vert r(t) \bigr\ vert\,dt>\ frac{3\alpha -1}{(d-c)^{2\alpha -1}}\ biggl(\ frac{3 \alpha -1}{2\alpha -1} \biggr) ^{\frac{2\alpha -1}{\alpha}},\quad \frac{1}{2}< \alpha \leq 1, $$ para un BVP conformable secuencial. Se dan algunos ejemplos y se analiza una aplicación al problema de autovalor de Sturm-Liouville conforme.

We prove a generalized Lyapunov-type inequality for a conformable boundary value problem (BVP) of order $\alpha \in (1,2]$ . Indeed, it is shown that if the boundary value problem $$ \bigl(\textbf{T}_{\alpha }^{c} x\bigr) (t)+r(t)x(t)=0,\quad t \in (c,d), x(c)=x(d)=0 $$ has a nontrivial solution, where r is a real-valued continuous function on $[c,d]$ , then 1 $$ \int_{c}^{d} \bigl\vert r(t) \bigr\vert \,dt> \frac{\alpha^{\alpha }}{(\alpha -1)^{\alpha -1}(d-c)^{ \alpha -1}}. $$ Moreover, a Lyapunov type inequality of the form 2 $$ \int_{c}^{d} \bigl\vert r(t) \bigr\vert \,dt> \frac{3\alpha -1}{(d-c)^{2\alpha -1}} \biggl( \frac{3 \alpha -1}{2\alpha -1} \biggr) ^{\frac{2\alpha -1}{\alpha }},\quad \frac{1}{2}< \alpha \leq 1, $$ is obtained for a sequential conformable BVP. Some examples are given and an application to conformable Sturm-Liouville eigenvalue problem is analyzed.

نثبت عدم تكافؤ معمم من نوع Lyapunov لمشكلة قيمة حدودية متوافقة (BVP) من أجل $\alpha \في (1،2]$ . في الواقع، يتضح أنه إذا كانت مشكلة قيمة الحدود $$\ bigl (\textbf{T} _{\alpha }^{ c} x\ bigr) (t)+r(t)x(t)=0،\quad t \in (c,d), x(c)=x(d)=0 $$ لديها حل غير بديهي، حيث r هي دالة مستمرة ذات قيمة حقيقية على $[ c, d ]$، ثم 1 $$\ int _{ c }^{ d}\ bigl\vert r(t)\ bigr\ vert\,dt>\ frac {\ alpha ^{\alpha }}{(\ alpha -1 )^{\alpha -1 }( d - c )^{\alpha -1}}. علاوة على ذلك، فإن متباينة من نوع ليابونوف من الشكل 2 $$\ int _{ c }^{ d}\ bigl\vert r(t)\ bigr\vert \,dt>\frac{3\alpha -1 }{( d - c )^{ 2\alpha -1}}\ biggl (\frac{3 \alpha -1 }{ 2\alpha -1}\ biggr )^{\frac{2\alpha -1 }{\ alpha }},\ quad \frac{1 }{ 2 }<\ alpha \leq 1, $$ يتم الحصول عليها من أجل BVP متسلسل متوافق. يتم إعطاء بعض الأمثلة وتحليل تطبيق لمشكلة القيمة الذاتية Sturm - Liouville المطابقة.

Related Organizations
Keywords

Nonlinear boundary value problems for ordinary differential equations, Inverse Problems in Mathematical Physics and Imaging, Psychometrics, conformable derivative, Fractional ordinary differential equations, Conformable matrix, Green’s function, Integro-Differential Equations, Theory and Applications of Fractional Differential Equations, Mathematical analysis, Quantum mechanics, Tikhonov Regularization, Alpha (finance), Sturm-Liouville theory, Differential equation, QA1-939, Differential inequalities involving functions of a single real variable, FOS: Mathematics, Lyapunov inequality, Boundary value problem, Biology, Mathematical Physics, Construct validity, Ecology, Applied Mathematics, Physics, Statistics, Green's function, Nonlocal Partial Differential Equations and Boundary Value Problems, Boundary Value Problems, Combinatorics, Boundary (topology), boundary value problem, Mathematical physics, FOS: Biological sciences, Physical Sciences, Inequalities for sums, series and integrals, Sturm-Liouville eigenvalue problem, Type (biology), Mathematics, Ordinary differential equation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 1%
gold