Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agronomyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agronomy
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agronomy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agronomy
Article . 2020
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bacterial Community in Soils Following Century-Long Application of Organic or Inorganic Fertilizers under Continuous Winter Wheat Cultivation

Authors: Xiufen Li; Shiping Deng; William R. Raun; Yan Wang; Ying Teng;

Bacterial Community in Soils Following Century-Long Application of Organic or Inorganic Fertilizers under Continuous Winter Wheat Cultivation

Abstract

Fertilization is one of the most common agricultural practices to achieve high yield. Although microbes play a critical role in nutrient cycling and organic matter decomposition, knowledge of the long-term responses of the soil bacterial community to organic and inorganic fertilizers is still limited. This study was conducted to evaluate the effects of century-long organic (manure), inorganic (NPK), and no fertilization (control) treatments on soil bacterial community structure under continuous winter wheat (Triticum aestivum L.) cultivation. Fertilization treatments altered the richness, diversity and composition of the soil bacterial community. Compared with the control, manure significantly increased the operational taxonomic units (OTUs), Chao 1 and Shannon indices, and taxonomic groups, while NPK significantly decreased these parameters. Fertilization treatments did not alter the types of dominant phyla but did significantly affect their relative abundances. Acidobacteria and Proteobacteria were the most dominant phyla in all treatments. Manure led to enrichment of most phyla, with a diazotrophic group, Cyanobacteria, being an exception; NPK reduced most phyla, but enriched Chloroflexi; control led to promotion of Cyanobacteria. Soil pH and NO3− were two dominant parameters influencing the bacterial community structure. Soil pH positively correlated with the relative abundances of Proteobacteria and Gemmatimonadetes but negatively correlated with those of Acidobacteria and Chloroflexi; NO3− negatively correlated with the relative abundance of Cyanobacteria, which was 14–52 times higher in control than the fertilized soils. Cyanobacteria, especially M. paludosus and L. appalachiana, could be the key players in maintaining wheat productivity in the century-long unfertilized control.

Related Organizations
Keywords

organic fertilizer, NPK, S, manure, soil bacterial community, inorganic fertilizer, Agriculture, 16S rRNA

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold