
This paper addresses the validation of a robust vision-based pose estimation technique using a Photonic Mixer Device (PMD) sensor as a single visual sensor in the close-range phase of spacecraft rendezvous. First, it was necessary to integrate the developed hybrid navigation technique for the PMD sensor into the hardware-in-the-loop (HIL) rendezvous system developed by the German Aerospace Center (DLR). Thereafter, HIL tests were conducted using the European Proximity Operation Simulator (EPOS) with sun simulation and in total darkness. For the future missions with an active sensor, e.g., a PMD camera, it could be useful to use only its own illumination during the rendezvous phase in penumbra or umbra, instead of additional flash light. In some tests, the rotational rate of the target object was also tuned. Unlike the rendezvous tests in other works, here we present for the first time closed-loop approaches with only depth and amplitude images of a PMD sensor. For the rendezvous tests in the EPOS laboratory, the Argos3D camera was used at the range of 8 to 5.5 m; the performance showed promising results.
close range rendezvous, Chemical technology, PMD sensor, Raumflugbetrieb und Astronautentraining, TP1-1185, illumination conditions, Article, hardware-in-the-loop simulations, Raumflugtechnologie
close range rendezvous, Chemical technology, PMD sensor, Raumflugbetrieb und Astronautentraining, TP1-1185, illumination conditions, Article, hardware-in-the-loop simulations, Raumflugtechnologie
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
