Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 1998
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 1998
Data sources: HAL INRAE
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Member of the Amiloride-Sensitive Sodium Channel Family inDrosophila melanogasterPeripheral Nervous System

Authors: Darboux, Isabelle; Lingueglia, E.; Pauron, David; Barbry, P.; Lazdunski, M.;

A New Member of the Amiloride-Sensitive Sodium Channel Family inDrosophila melanogasterPeripheral Nervous System

Abstract

Amiloride sensitivity is a common characteristic of structurally related cationic channels that are associated with a wide range of physiological functions. In Caenorhabditis elegans, neuronal and muscular degenerins are involved in mechanoperception. In animal epithelia, a Na(+)-selective channel participates in vectorial Na+ transport. In the snail nervous system, an ionotropic receptor for the peptide FMRFamide forms a Na(+)-selective channel. In mammalian brain and/or in sensory neurons, ASIC channels form H(+)-activated cation channels involved in nociception linked to acidosis. We have now cloned a new member of this family from Drosophila melanogaster. The corresponding protein displays low sequence identity with the previously cloned members of the super-family but it has the same structural organization. Its mRNA was detected from late embryogenesis (14-17 hours) and was present in the dendritic arbor subtype of the Drosophila peripheral nervous system multiple dendritic (md) sensory neurons. While the origin and specification of md neurons are well documented, their roles are still poorly understood. They could function as stretch or touch receptors, raising the possibility that this Drosophila gene product, called dmdNaC1, could also be involved in mechanotransduction.

Keywords

DNA, Complementary, Base Sequence, [SDV]Life Sciences [q-bio], Molecular Sequence Data, Gene Expression Regulation, Developmental, Genes, Insect, Polymerase Chain Reaction, Sodium Channels, [SDV] Life Sciences [q-bio], Amiloride, Drosophila melanogaster, CANAL SODIUM, Animals, Amino Acid Sequence, Peripheral Nerves, Cloning, Molecular, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!