Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Plant Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Plant Biology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Plant Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Plant Biology
Article . 2020
Data sources: DOAJ
versions View all 4 versions
addClaim

Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels

Authors: Guomin Han; Cuiping Li; Fangzhi Xiang; Qianqian Zhao; Yang Zhao; Ronghao Cai; Beijiu Cheng; +2 Authors

Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels

Abstract

AbstractBackgroundFungus infection in staple grains affects the food storage and threatens food security. TheAspergillus flavusis known to infect multiple grains and produce mycotoxin Aflatoxin B1, which is mutagenic, teratogenic and causes immunosuppression in animals. However, the molecular mechanism of maize resistance toA. flavusis largely unknown.ResultsHere we used corn kernels to investigate resistance genes toA. flavususing genome-wide association study (GWAS) of 313 inbred lines. We characterized the resistance levels of kernels after inoculating withA. flavus. The GWAS with 558,529 SNPs identified four associated loci involving 29 candidate genes that were linked to seed development, resistance or infection, and involved in signal pathways, seed development, germination, dormancy, epigenetic modification, and antimicrobial activity. In addition, a few candidate genes were also associated with several G-protein signaling and phytohormones that might involve in synergistic work conferring different resistance during seed development. Expression of 16 genes out of 29 during kernel development was also associated with resistance levels.ConclusionsWe characterized the resistance levels of 313 maize kernels after inoculating withA. flavus, and found four associated loci and 16 candidate maize genes. The expressed 16 genes involved in kernel structure and kernel composition most likely contribute to mature maize kernels’ resistance toA. flavus, and in particular, in the development of pericarp. The linked candidate genes could be experimentally transformed to validate and manipulate fungal resistance. Thus this result adds value to maize kernels in breeding programs.

Related Organizations
Keywords

Aflatoxin B1, Resistance, Botany, SNP, Zea mays, Maize, QK1-989, Aspergillus pathogen, Seeds, GWAS, Research Article, Aspergillus flavus, Disease Resistance, Genome-Wide Association Study, Plant Diseases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
gold