
The penetration of enveloped viruses into target cells requires the fusion of the lipid envelope of their virions with the host lipid membrane though a stepwise and highly sophisticated process. However, the intermediate steps in this process have seldom been visualized due to their rarity and rapidity. Here, using cryo-electron tomography, TIRF microscopy, and cell membrane-derived vesicles called blebs, Ward et al. visualize intermediates of the HIV-cell membrane fusion process and demonstrate how Serinc proteins prevent full fusion by interfering with this process.
[SDV] Life Sciences [q-bio], Electron Microscope Tomography, [SDV]Life Sciences [q-bio], Cryoelectron Microscopy, Virion, Humans, Electrons, HIV Infections, Membrane Fusion
[SDV] Life Sciences [q-bio], Electron Microscope Tomography, [SDV]Life Sciences [q-bio], Cryoelectron Microscopy, Virion, Humans, Electrons, HIV Infections, Membrane Fusion
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
