Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hypertensionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hypertension
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2011
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2011
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hypertension
Article . 2011 . Peer-reviewed
Data sources: Crossref
Hypertension
Article . 2011
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Epidermal Growth Factor Receptor Mediates the Vascular Dysfunction But Not the Remodeling Induced by Aldosterone/Salt

Authors: Griol-Charhbili, Violaine; Fassot, Céline; Messaoudi, Smail; Perret, Claudine; Agrapart, Vincent; Jaisser, Frederic;

Epidermal Growth Factor Receptor Mediates the Vascular Dysfunction But Not the Remodeling Induced by Aldosterone/Salt

Abstract

Pathophysiological aldosterone (aldo)/mineralocorticoid receptor signaling has a major impact on the cardiovascular system, resulting in hypertension and vascular remodeling. Mineralocorticoids induce endothelial dysfunction, decreasing vasorelaxation in response to acetylcholine and increasing the response to vasoconstrictors. Activation of the epidermal growth factor receptor (EGFR) is thought to mediate the vascular effects of aldo, but this has yet to be demonstrated in vivo. In this study, we analyzed the molecular and functional vascular consequences of aldo-salt challenge in the waved 2 mouse, a genetic model with a partial loss of EGFR tyrosine kinase activity. Deficient EGFR activity is associated with global oxidative stress and endothelial dysfunction. A decrease in EGFR activity did not affect the arterial wall remodeling process induced by aldo-salt. By contrast, normal EGFR activity was required for the aldo-induced enhancement of phenylephrine- and angiotensin II–mediated vasoconstriction. In conclusion, this in vivo study demonstrates that EGFR plays a key role in aldosterone-mediated vascular reactivity.

Country
France
Keywords

Male, Nitroprusside, Dose-Response Relationship, Drug, Genotype, Nitric Oxide Synthase Type III, [SDV.MHEP.PHY] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO], Angiotensin II, Blotting, Western, Hemodynamics, Gene Expression, NADPH Oxidases, In Vitro Techniques, Nephrectomy, Acetylcholine, Mice, Mutant Strains, ErbB Receptors, Mice, Carotid Arteries, Animals, Aldosterone, Aorta

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
bronze