Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Microb...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Microbiology
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular evidence that deep‐branching fungi are major fungal components in deep‐sea methane cold‐seep sediments

Authors: Takahiko, Nagahama; Eriko, Takahashi; Yuriko, Nagano; Mohamed A, Abdel-Wahab; Masayuki, Miyazaki;

Molecular evidence that deep‐branching fungi are major fungal components in deep‐sea methane cold‐seep sediments

Abstract

Summary The motile cells of chytrids were once believed to be relics from the time before the colonization of land by fungi. However, the majority of chytrids had not been found in marine but freshwater environments. We investigated fungal diversity by a fungal‐specific PCR‐based analysis of environmental DNA in deep‐sea methane cold‐seep sediments, identifying a total of 35 phylotypes, 12 of which were early diverging fungi (basal fungi, ex ‘lower fungi’). The basal fungi occupied a major portion of fungal clones. These were phylogenetically placed into a deep‐branching clade of fungi and the LKM11 clade that was a divergent group comprised of only environmental clones from aquatic environments. As suggested by Lara and colleagues, species of the endoparasitic genus Rozella , being recently considered of the earliest branching taxa of fungi, were nested within the LKM11 clade. In the remaining 23 phylotypes identified as the Dikarya, the majority of which were similar to those which appeared in previously deep‐sea studies, but also highly novel lineages associated with Soil Clone Group I (SCGI), Entorrhiza sp. and the agaricomycetous fungi were recorded. The fungi of the Dikarya may play a role in the biodegradation of lignin and lignin‐derived materials in deep‐sea, because the characterized fungal species related to the frequent phylotypes within the Dikarya have been reported to possess an ability to degrade lignin.

Keywords

Geologic Sediments, Oceans and Seas, Fungi, Biodiversity, DNA, Ribosomal, DNA, Fungal, Methane, Phylogeny, Gene Library

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    120
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
120
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!