Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied and Environmental Microbiology
Article . 2018 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity

Authors: Sun-Ki, Kim; Michael E, Himmel; Yannick J, Bomble; Janet, Westpheling;

Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity

Abstract

ABSTRACT Members of the genus Caldicellulosiruptor have the ability to deconstruct and grow on lignocellulosic biomass without conventional pretreatment. A genetically tractable species, Caldicellulosiruptor bescii , was recently engineered to produce ethanol directly from switchgrass. C. bescii contains more than 50 glycosyl hydrolases and a suite of extracellular enzymes for biomass deconstruction, most prominently CelA, a multidomain cellulase that uses a novel mechanism to deconstruct plant biomass. Accumulation of cellobiose, a product of CelA during growth on biomass, inhibits cellulase activity. Here, we show that heterologous expression of a cellobiose phosphorylase from Thermotoga maritima improves the phosphorolytic pathway in C. bescii and results in synergistic activity with endogenous enzymes, including CelA, to increase cellulolytic activity and growth on crystalline cellulose. IMPORTANCE CelA is the only known cellulase to function well on highly crystalline cellulose and it uses a mechanism distinct from those of other cellulases, including fungal cellulases. Also unlike fungal cellulases, it functions at high temperature and, in fact, outperforms commercial cellulase cocktails. Factors that inhibit CelA during biomass deconstruction are significantly different than those that impact the performance of fungal cellulases and commercial mixtures. This work contributes to understanding of cellulase inhibition and enzyme function and will suggest a rational approach to engineering optimal activity.

Keywords

Cellobiose, Hydrolysis, Plants, Bacterial Proteins, Cellulase, Glucosyltransferases, Cellulases, Thermotoga maritima, Biomass, Cellulose, Metabolic Networks and Pathways

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
bronze