
ABSTRACT Members of the genus Caldicellulosiruptor have the ability to deconstruct and grow on lignocellulosic biomass without conventional pretreatment. A genetically tractable species, Caldicellulosiruptor bescii , was recently engineered to produce ethanol directly from switchgrass. C. bescii contains more than 50 glycosyl hydrolases and a suite of extracellular enzymes for biomass deconstruction, most prominently CelA, a multidomain cellulase that uses a novel mechanism to deconstruct plant biomass. Accumulation of cellobiose, a product of CelA during growth on biomass, inhibits cellulase activity. Here, we show that heterologous expression of a cellobiose phosphorylase from Thermotoga maritima improves the phosphorolytic pathway in C. bescii and results in synergistic activity with endogenous enzymes, including CelA, to increase cellulolytic activity and growth on crystalline cellulose. IMPORTANCE CelA is the only known cellulase to function well on highly crystalline cellulose and it uses a mechanism distinct from those of other cellulases, including fungal cellulases. Also unlike fungal cellulases, it functions at high temperature and, in fact, outperforms commercial cellulase cocktails. Factors that inhibit CelA during biomass deconstruction are significantly different than those that impact the performance of fungal cellulases and commercial mixtures. This work contributes to understanding of cellulase inhibition and enzyme function and will suggest a rational approach to engineering optimal activity.
Cellobiose, Hydrolysis, Plants, Bacterial Proteins, Cellulase, Glucosyltransferases, Cellulases, Thermotoga maritima, Biomass, Cellulose, Metabolic Networks and Pathways
Cellobiose, Hydrolysis, Plants, Bacterial Proteins, Cellulase, Glucosyltransferases, Cellulases, Thermotoga maritima, Biomass, Cellulose, Metabolic Networks and Pathways
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
