
The black-chinned tilapia Sarotherodon melanotheron heudelotii Rüppell 1852 (Teleostei, Cichlidae) displays remarkable acclimation capacities. When exposed to drastic changes of salinity, which can be the case in its natural habitat, it develops quick physiological responses and keeps reproducing. The present study focused on the physiological impact of salinity on male reproductive capacities, using gene expression as a proxy of acclimation process. Two series of experimental fish were investigated: the first one was composed of fish maintained in freshwater for several generations and newly acclimated to salinities of 35 and 70, whereas the second one consisted of the descendants of the latter born and raised under their native salinity. Expression patterns of 43 candidate genes previously identified from the testes of wild males was investigated in the three salinities and two generations. Twenty of them showed significant expression differences between salinities, and their predicted function revealed that most of them are involved in the osmotic tolerance of sperm cells and/or in the maintenance of sperm motility. A high level of expression variation was evidenced, especially for fish maintained in freshwater. In spite of this, gene expression patterns allowed the differentiation between fish raised in freshwater and those maintained in hypersaline water, in both generations. Altogether, the results presented here suggest that this high variability of expression is likely to ensure the reproductive success of this species under varying salinities.
[SDE] Environmental Sciences, 570, Salinity, QH301-705.5, Male reproduction, R, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, Fish, [SDE]Environmental Sciences, Aquaculture, Fisheries and Fish Science, Medicine, Gene expression, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, Biology (General), Acclimation
[SDE] Environmental Sciences, 570, Salinity, QH301-705.5, Male reproduction, R, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, Fish, [SDE]Environmental Sciences, Aquaculture, Fisheries and Fish Science, Medicine, Gene expression, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, Biology (General), Acclimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
