Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.archives...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Conference object . 2018
Data sources: HAL-Rennes 1
https://doi.org/10.1109/hpcc/s...
Article . 2018 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

User Selection in 5G Heterogeneous Networks Based on Millimeter-Wave and Beamforming

Authors: Fadel, Ahmad; Cousin, Bernard; Khalil, Ayman;

User Selection in 5G Heterogeneous Networks Based on Millimeter-Wave and Beamforming

Abstract

Heterogeneous Networks (HetNETs) are considered as an effective solution to improve the coverage and system throughput for future cellular networks. The extremely growing mobile market, together with the arising demand for high data rates, motivate us to open a new spectrum related to millimeter waves (mmwaves) while using beamforming that can serve simultaneously a group of users. In this paper, we formulate an optimization problem for HetNETs multi-user selection in a multi-input-multi-output and orthogonal frequency-division multiple access (MIMO-OFDMA) system, aiming to maximize the total system throughput. We solve the problem by applying a modified version of well-known metaheuristic algorithms. The optimal solution is obtained using an exhaustive search algorithm that provides an ideal solution which is complex to be computed. Greedy zero-forcing dirty-paper gZF-DP and zeroforcing selection ZFS algorithms were selected from literature for the sub-optimal solution. In parallel, a water-filling algorithm has been optimized after adding new power constraint and it has been used for power distribution. Hence, we analyze the throughput performance of our systems using throughput metric. The results show that ZFS outperforms gZF-DP algorithm as it achieves higher total throughput, While gZF-DP outperforms ZFS algorithm in the execution time.

Country
France
Keywords

[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], User selection, 5G heterogeneous network, millimeter waves, beamforming

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green