
Heterogeneous Networks (HetNETs) are considered as an effective solution to improve the coverage and system throughput for future cellular networks. The extremely growing mobile market, together with the arising demand for high data rates, motivate us to open a new spectrum related to millimeter waves (mmwaves) while using beamforming that can serve simultaneously a group of users. In this paper, we formulate an optimization problem for HetNETs multi-user selection in a multi-input-multi-output and orthogonal frequency-division multiple access (MIMO-OFDMA) system, aiming to maximize the total system throughput. We solve the problem by applying a modified version of well-known metaheuristic algorithms. The optimal solution is obtained using an exhaustive search algorithm that provides an ideal solution which is complex to be computed. Greedy zero-forcing dirty-paper gZF-DP and zeroforcing selection ZFS algorithms were selected from literature for the sub-optimal solution. In parallel, a water-filling algorithm has been optimized after adding new power constraint and it has been used for power distribution. Hence, we analyze the throughput performance of our systems using throughput metric. The results show that ZFS outperforms gZF-DP algorithm as it achieves higher total throughput, While gZF-DP outperforms ZFS algorithm in the execution time.
[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], User selection, 5G heterogeneous network, millimeter waves, beamforming
[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], User selection, 5G heterogeneous network, millimeter waves, beamforming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
