
AbstractA major determinant of flowering time in natural Arabidopsis (Arabidopsis thaliana) variants is FRIGIDA (FRI). FRI up-regulates expression of the floral repressor FLOWERING LOCUS C (FLC), thereby conferring a vernalization requirement and a winter annual habit. FRI encodes a novel nuclear protein with no conserved domains except for two coiled-coil regions. A mutation in the large subunit of the nuclear cap-binding complex (CBC) suppresses FRI activity, so we have explored the connection between FRI and the nuclear CBC in order to gain further insight into FRI biochemical activity. Mutations in the small subunit of the CBC (CBP20) also suppress FRI up-regulation of FLC. CBP20 interacted directly with FRI in yeast and in planta, and this association of FRI with the 5′ cap was reinforced by an RNA ligase-mediated rapid amplification of cDNA ends assay that showed FRI decreased the proportion of FLC transcripts lacking a 5′ cap. Loss of CBP20 resulted in very low FLC mRNA levels and an increased proportion of unspliced FLC transcripts. FRI compensated for CBP20 loss, partially restoring FLC levels and normalizing the unspliced-spliced transcript ratio. Our data suggest that FRI up-regulates FLC expression through a cotranscriptional mechanism involving direct physical interaction with the nuclear CBC with concomitant effects on FLC transcription and splicing.
Transcription, Genetic, Arabidopsis Proteins, RNA Splicing, Arabidopsis, RNA-Binding Proteins, MADS Domain Proteins, Flowers, Up-Regulation, Exoribonucleases, Mutation, RNA, Messenger, Plant Proteins
Transcription, Genetic, Arabidopsis Proteins, RNA Splicing, Arabidopsis, RNA-Binding Proteins, MADS Domain Proteins, Flowers, Up-Regulation, Exoribonucleases, Mutation, RNA, Messenger, Plant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 126 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
