
La performance optimale d'un système multi-refroidisseur (MCS) est le facteur crucial dans la gestion de la consommation d'énergie attendue (EPC). De plus, l'incertitude de la demande de refroidissement dans le secteur industriel ou résidentiel joue un rôle crucial, qui doit être modélisé et géré. Ainsi, la performance stochastique contrainte par le risque de la charge optimale du refroidisseur est étudiée dans un environnement incertain dans cet article. La programmation stochastique basée sur le scénario est appliquée à l'étude de cas fournie pour modéliser l'incertitude de la demande de refroidissement (CDU), et les contraintes de risque à la baisse (DRC) sont mises en œuvre pour modéliser les risques associés. La performance sans risque du MCS est comparée à celle sans risque pour montrer les effets positifs du DRC. Le modèle proposé est mis en œuvre sous le solveur DICOPT dans le logiciel GAMS. Les résultats de la comparaison montrent que la consommation d'énergie attendue du MCS augmente lentement, tandis que la consommation d'énergie en risque attendue (ERIPC) diminue rapidement. INDICE TERMSCooling demand uncertainty (CDU), downside risk constraints (DRC), expected power consumption (EPC), expected risk-in-power consumption (ERIPC), multi-chiller system (MCS), risk-neutral and risk-averse performances.
El rendimiento óptimo de un sistema de enfriadores múltiples (MCS) es el factor crucial en la gestión del consumo de energía esperado (EPC). Además, la incertidumbre de la demanda de enfriamiento en el sector industrial o residencial juega un papel crucial, que debe modelarse y gestionarse. Por lo tanto, el rendimiento estocástico restringido al riesgo de la carga óptima del enfriador se estudia en un entorno incierto en este documento. La programación estocástica basada en escenarios se aplica al estudio de caso proporcionado para modelar la incertidumbre de la demanda de enfriamiento (CDU), y las restricciones de riesgo a la baja (DRC) se implementan para modelar los riesgos asociados. El rendimiento con riesgo adverso del MCS se compara con el neutro al riesgo para mostrar los efectos positivos del DRC. El modelo propuesto se implementa bajo el solucionador DICOPT en el software GAMS. Los resultados de la comparación muestran que el consumo de energía esperado de MCS aumenta lentamente, mientras que el consumo esperado de riesgo en energía (ERIPC) disminuye rápidamente. INDEX TERMSCooling demand uncertainty (CDU), downside risk constraints (DRC), expected power consumption (EPC), expected risk-in-power consumption (ERIPC), multi-chiller system (MCS), risk-neutral and risk-averse performance.
The optimal performance of a multi-chiller system (MCS) is the crucial factor in managing the expected power consumption (EPC).Also, the uncertainty of cooling demand in the industrial or residential sector plays a crucial role, which should be modeled and managed.So, the stochastic risk-constrained performance of the optimal chiller loading is studied in an uncertain environment in this paper.Scenariobased stochastic programming is applied to the provided case study to model the cooling demand uncertainty (CDU), and the downside risk constraints (DRC) are implemented to model the associated risks.The riskaverse performance of the MCS is compared with the risk-neutral one to show the positive effects of the DRC.The proposed model is implemented under the DICOPT solver in GAMS software.The comparison results show that the expected power consumption of MCS is increased slowly, while the expected risk-in-power consumption (ERIPC) is decreased promptly. INDEX TERMSCooling demand uncertainty (CDU), downside risk constraints (DRC), expected power consumption (EPC), expected risk-in-power consumption (ERIPC), multi-chiller system (MCS), risk-neutral and risk-averse performances.
الأداء الأمثل للنظام متعدد المبردات (MCS) هو العامل الحاسم في إدارة استهلاك الطاقة المتوقع (EPC). أيضًا، يلعب عدم اليقين في الطلب على التبريد في القطاع الصناعي أو السكني دورًا حاسمًا، والذي يجب نمذجته وإدارته. لذلك، تتم دراسة الأداء العشوائي المقيد بالمخاطر لتحميل المبرد الأمثل في بيئة غير مؤكدة في هذه الورقة. يتم تطبيق البرمجة العشوائية المستندة إلى Scenariobased على دراسة الحالة المقدمة لنمذجة عدم اليقين في الطلب على التبريد (CDU)، ويتم تنفيذ قيود المخاطر السلبية (DRC) لنمذجة المخاطر المرتبطة. تتم مقارنة الأداء المعاكس للمخاطر لـ MCS مع الأداء المحايد للمخاطر لإظهار الآثار الإيجابية لـ DRC. يتم تنفيذ النموذج المقترح تحت حل DICOPT في برنامج GAMS. تظهر نتائج المقارنة أن استهلاك الطاقة المتوقع لـ MCS يزداد ببطء، بينما يتم تقليل استهلاك المخاطر المتوقعة في الطاقة (ERIPC) على الفور. مؤشر عدم اليقين في الطلب على التبريد (CDU)، وقيود المخاطر السلبية (DRC)، واستهلاك الطاقة المتوقع (EPC)، والاستهلاك المتوقع للمخاطر في الطاقة (ERIPC)، ونظام التبريد المتعدد (MCS)، والأداء المحايد للمخاطر والممتنع عن المخاطر.
Financial economics, Building Energy Efficiency and Thermal Comfort Optimization, Economics, Downside risk, Chiller, expected power consumption (EPC), FOS: Economics and business, Engineering, Sociology, Energy Efficiency in Manufacturing and Industry Sector, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, downside risk constraints (DRC), Demand Response in Smart Grids, Econometrics, Electrical and Electronic Engineering, Energy, Renewable Energy, Sustainability and the Environment, Energy Simulation, Physics, Mathematical optimization, Building and Construction, risk-neutral and risk-averse performances, Social science, Computer science, Cooling demand uncertainty (CDU), TK1-9971, FOS: Sociology, Programming language, multi-chiller system (MCS), Consumption (sociology), Solver, Physical Sciences, expected risk-in-power consumption (ERIPC), Thermodynamics, Electrical engineering. Electronics. Nuclear engineering, Portfolio, Mathematics
Financial economics, Building Energy Efficiency and Thermal Comfort Optimization, Economics, Downside risk, Chiller, expected power consumption (EPC), FOS: Economics and business, Engineering, Sociology, Energy Efficiency in Manufacturing and Industry Sector, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, downside risk constraints (DRC), Demand Response in Smart Grids, Econometrics, Electrical and Electronic Engineering, Energy, Renewable Energy, Sustainability and the Environment, Energy Simulation, Physics, Mathematical optimization, Building and Construction, risk-neutral and risk-averse performances, Social science, Computer science, Cooling demand uncertainty (CDU), TK1-9971, FOS: Sociology, Programming language, multi-chiller system (MCS), Consumption (sociology), Solver, Physical Sciences, expected risk-in-power consumption (ERIPC), Thermodynamics, Electrical engineering. Electronics. Nuclear engineering, Portfolio, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
