
AbstractA pilot study to quantify 55Fe in steel from a reactor vessel of a nuclear power plant by accelerator mass spectrometry (AMS) without any chemical sample preparation was validated by liquid scintillation counting (LSC) and AMS after radiochemical separation. AMS reaches an uncertainty < 10% at the 1 kBq gFe−1 level within less than 10 min measuring time. The background was < 3 Bq gFe−1, presently limited by the short measurement time. The new instrumental AMS method for analysing 55Fe from neutron capture production is reasonable and fast compared to other analytical methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
