Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Turbomach...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Turbomachinery
Article . 2013 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
https://doi.org/10.1115/gt2013...
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical and Experimental Comparison of a Tandem and Single Vane Deswirler Used in an Aero Engine Centrifugal Compressor

Authors: Benjamin Wilkosz; Johannes Schmidt; Christian Guenther; Philipp Schwarz; Peter Jeschke; Caitlin Smythe;

Numerical and Experimental Comparison of a Tandem and Single Vane Deswirler Used in an Aero Engine Centrifugal Compressor

Abstract

Abstract The present work is part of the research project at the Institute of Jet Propulsion and Turbomachinery at the RWTH Aachen University in collaboration with GE Aviation. The subject is the numerical and experimental analysis of two blading strategies used in the diffusion system of an aero engine centrifugal compressor. The transonic centrifugal compressor investigated contains a close-coupled impeller and passage diffuser, followed by a deswirler system. The deswirler redirects the flow towards the combustion chamber, while decreasing swirl and recovering pressure. It is characterized by a high aerodynamic loading, due to a moderate inlet Mach number of 0.35, in combination with a required flow redirection of 70 deg in circumferential and 135 deg in meridional direction. For this purpose, two different blading strategies are investigated, both retaining the same meridional flow path and integral chord length. The first design is a tandem configuration with 30 vanes in the first row and 60 vanes in the second row. In principal, this approach benefits from the small wetted surface, the short and thereby stable boundary layers as well as the positive blade interaction due to the close alignment. The second design contains one row of 75 vanes. The higher solidity is needed to compensate for the longer boundary layers. The two deswirlers investigated are compared to a less compact baseline deswirler with simple prismatic vanes. Experimental and numerical data shows that both new configurations have very similar stage efficiency. The single row design shows a higher static pressure recovery, resulting in a +0.2%-points total-to-static isentropic efficiency increase compared to the tandem design. Detailed flow analysis in the deswirler system shows different characteristics in terms of losses, loss mechanisms and pressure build-up. Due to the required high turning, both designs suffer from flow separation. Nevertheless, the single row design shows its robustness under the impact of 3D flow, whereas the tandem suffers from end wall induced losses. The results show that the classical mechanisms making a tandem favorable for high flow turning in 2D flow are counteracted by 3D flow mechanisms caused by the spanwise pressure gradient. The low aspect ratio even increases the effect of 3D end wall mechanisms. These results, combined with a higher manufacturing effort, show that a tandem configuration is not necessarily the superior design for highly 3D flow conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!