FundRef: 501100009398 , 501100007210
RRID: RRID:SCR_011509 , RRID:nlx_74722
ISNI: 000000010728696X
Wikidata: Q273263
FundRef: 501100009398 , 501100007210
RRID: RRID:SCR_011509 , RRID:nlx_74722
ISNI: 000000010728696X
Wikidata: Q273263
Chemical energy carriers will play an essential role for future energy systems, where harvesting and utilization of renewable energy occur not necessarily at the same time or place, hence long-time storage and long-range transport of energy are needed. For this, hydrogen-based energy carriers, such as hydrogen and ammonia, hold great promise. Their utilization by combustion-based energy conversion has many advantages, e.g., versatile use for heat and power, robust and flexible technologies, and its suitability for a continuous energy transition. However, combustion of both hydrogen and ammonia is very challenging. For technically relevant conditions, both form intrinsic, so-called thermo-diffusive instabilities (very different from the often-discussed thermo-acoustic instabilities), which can increase burn rates by a stunning factor of three to five! Without considering this, computational design is impossible. Yet, while linear theories exist, little is understood for the more relevant non-linear regime, and beyond some data and observations, virtually nothing is known about the interactions of intrinsic flame instabilities (IFI) with turbulence. Here, rigorous analysis of new data for neat H2 and NH3/H2-blends from simulations and experiments will lead to a quantitative understanding of the relevant aspects. From this, a novel modeling framework with uncertainty estimates will be developed. The key hypothesis then is that combustion processes of hydrogen-based fuels can be improved by targeted weakening or promotion of IFI, and that this kind of instability-controlled combustion can jointly improve efficiency, emissions, stability, and fuel flexibility in different combustion devices, such as spark-ignition engines, gas turbines, and industrial burners. Guided by the developed knowledge and tools, this intrinsic-flame-instability-controlled combustion concept will be demonstrated computationally and experimentally for two sample applications.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::af14b70cb29adfba7070d5600ac9177d&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::af14b70cb29adfba7070d5600ac9177d&type=result"></script>');
-->
</script>
Program correctness is a central problem in computer science. Code inspection and testing can reveal many program bugs, but subtle errors need a rigorous analysis. A fully automated analysis is impossible: deciding whether a program terminates on a given input is undecidable. Thanks to unremitting developments in program verification and incredible advancements in satisfiability checking, program verification is nowadays supported by software tools in industrial practice. Meta and Amazon Web Services use program verification tools on a daily basis. In the advent of AI, probabilistic programming emerged as a popular paradigm combining programming with learning from (big) data. Since 2018, the UN uses such probabilistic programs to predict the location and classify seismological activities on the earth. Other application areas include security, planning in AI, cognitive science, and neural network training. Probabilistic programs are fundamentally different. Due to randomness, they sometimes terminate and sometimes not. Their outcome depends on coin flips. They may terminate with probability one, while having an infinite expected run time. Classical program verification techniques no longer apply. The ERC project FRAPPANT has resulted in proof calculi for probabilistic programs, equipped with powerful proof rules, and identified a relative complete syntax for quantitative properties. This has led to a prototypical deductive verifier for an “assembler” programming language. A software tool for which no equivalent exists. Successful analyses of intricate programs showed its potential. The proposed project aims to explore the commercial and innovative aspects of our deductive verifier. It takes the necessary innovative steps to enable a commercialisation by including invariant synthesis and program slicing and supporting the popular probabilistic programming language STAN. Its potential will be investigated engaging potential users, and a market analysis.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::951ed666484abbc9c870071a1509bf9a&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::951ed666484abbc9c870071a1509bf9a&type=result"></script>');
-->
</script>
Anilines and their derivatives are integral organic molecules with application as medicines, agrochemicals and organic materials. Over the last 30 years, the Buchwald-Hartwig and Ullmann cross-couplings have dominated the area of aromatic amination. These reactions involve palladium- or copper-catalyzed C-N bond formation between a halogenated aromatic and an amine. Only aromatics that have been halogenated will react with the metal catalysts and undergo cross-coupling. Therefore, although these processes are widely used, there are 2 significant challenges associated with them: a. aromatic halogenation reactions are often problematic in terms of selectivity b. cross-coupling reactions are known to fail on complex and functionalized materials With this project we aim to provide a transformative advance in the field and demonstrate the direct conversion of functionalized N-cyclohexyl-amides, carbamates and sulfonamides into the corresponding N-aryl derivatives. To achieve this, we will use an unprecedented triple catalysis manifold based on photoredox catalysis, cobalt catalysis and H-atom transfer catalysis. This innovative catalytic system will effectively trigger desaturation of the starting N-cyclohexyl derivatives and key reactive intermediates. This research will create a novel approach for the one-step synthesis of many complex anilines from unusual precursors, which are largely commercially-available or easy to prepare. The proposal capitalizes on recent developments by the host group in aniline synthesis and dual photoredox–cobalt catalysis. The development of this innovative project at RWTH Aachen University will create new tools in bio-organic chemistry and enable the rapid and efficient preparation of high-value materials. Implementation of the project will be facilitated by the generation, transfer, and dissemination of knowledge, which will greatly enhance my future career prospects, in accordance with the enviosioned training plan.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::75c8bcf0e5a304ae74ae8c43211cb02c&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::75c8bcf0e5a304ae74ae8c43211cb02c&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::5b13ad742f1af163d035cf1e7ed41ecb&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::5b13ad742f1af163d035cf1e7ed41ecb&type=result"></script>');
-->
</script>
Olefins are feedstocks readily available from petroleum and vegetable biomass with an integral role in the preparation of high-value materials. In particular, olefin ozonolysis used to introduce oxygen atoms and convert these molecules into a broad spectrum of synthetic intermediates like aldehydes, ketones and carboxylic acids. So far ozonolysis reactions mostly adopted by the bulk chemical industry which uses it on simple materials. The fine chemical sectors (pharmaceutical and agrochemical industries) do not use this reactivity mostly due to safety concerns in handling ozone. The Leonori group has recently demonstrated that photoexcited nitroarenes can be used as ozone surrogates for the oxidative cleavage of olefins. This project seeks to understand the key mechanistic factors that govern the reactivity so that generalization and application by the broad chemical community might be possible. The completion of such a timely and relevant mechanistic project at RWTH Aachen University will be facilitated by generating, transferring, sharing and disseminating knowledge, and will enhance The Researcher’s future career following the training plan envisioned.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::af8083eec68a5258a46a88641a883ead&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::af8083eec68a5258a46a88641a883ead&type=result"></script>');
-->
</script>