Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Structura...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Structural Geology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinematic analyses of orogen-parallel L-tectonites from Pelling-Munsiari thrust of Sikkim Himalayan fold thrust belt: Insights from multiple, incremental strain markers

Authors: Jyoti Prasad Das; Kathakali Bhattacharyya; Matty Mookerjee; Pritam Ghosh;

Kinematic analyses of orogen-parallel L-tectonites from Pelling-Munsiari thrust of Sikkim Himalayan fold thrust belt: Insights from multiple, incremental strain markers

Abstract

Abstract Fault rocks associated with the Pelling thrust (PT) in the Sikkim Himalayan fold thrust belt (FTB) change from SL tectonites to local, transport-parallel L-tectonites that are exposed in discontinuous klippen south of the PT zone. By estimating the incremental kinematic vorticity number (Wk) from quartz c-axes fabric, oblique fabric, and subgrains, we reconstruct a first-order, kinematic path of these L-tectonites. Quartz c-axes fabric suggests that the deformation initiated as pure-shear dominated (∼56–96%) that progressively became simple-shear dominated (∼29–54%), as recorded by the oblique fabric and subgrains in the L-tectonites. These rocks record a non-steady deformation where the kinematic vorticity varied spatially and temporally within the klippen. The L-tectonites record ∼30% greater pure-shear than the PT fault rocks outside the klippen, and the greatest pure-shear dominated flow among the published vorticity data from major fault rocks of the Himalayan FTB. The relative decrease in the transport-parallel simple-shear component within the klippen, and associated relative increase of transport-perpendicular, pure-shear component, support the presence of a sub-PT lateral ramp in the Sikkim Himalayan FTB. This study demonstrates the influence of structural architecture for fault systems for controlling spatial and temporal variations of deformation fabrics and kinematic path of deforming thrust wedges.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!