
PurposeIn acceptance sampling, the hypergeometric operating characteristic (OC) function (so called type-A OC) is used to be approximated by the binomial or Poisson OC function, which actually reduce computational effort, but do not provide suffcient approximation results. The purpose of this paper is to examine binomial- and Poisson-type approximations to the hypergeometric distribution, in order to find a simple but accurate approximation that can be successfully applied in acceptance sampling.Design/methodology/approachThe authors present a new binomial-type approximation for the type-A OC function, and derive its properties. Further, the authors compare this approximation via an extensive numerical study with other common approximations in terms of variation distance and relative efficiency under various conditions on the parameters including limiting cases.FindingsThe introduced approximation generates best numerical results over a wide range of parameter values, and ensures arithmetic simplicity of the binomial distribution and high accuracy to meet requirements regarding acceptance sampling problems. Additionally, it can considerably reduce the computational effort in relation to the type-A OC function and therefore is strongly recommended for calculating sampling plans.Originality/valueThe newly presented approximation provides a remarkably close fit to the type-A OC function, is discrete and needs no correction for continuity, and is skewed in the same direction by roughly the same amount as the exact OC. Due to less factorials, this OC in general involves lower powers than the type-A OC function. Moreover, the binomial-type approximation is easy to fit to the conventional statistical computing packages.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
