Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Physical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Physical Journal C: Particles and Fields
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/q0...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/bd...
Other literature type . 2020
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Higgs physics on the parameter space of the $$\mu \nu \mathrm{SSM}$$

تأثير فيزياء هيغز على مساحة المعلمة $$\ mu \nu \mathrm{SSM }$$
Authors: Essodjolo Kpatcha; Daniel E. López-Fogliani; Carlos Muñoz; Roberto Ruiz de Austri;

Impact of Higgs physics on the parameter space of the $$\mu \nu \mathrm{SSM}$$

Abstract

AbstractGiven the increasing number of experimental data, together with the precise measurement of the properties of the Higgs boson at the LHC, the parameter space of supersymmetric models starts to be constrained. We carry out a detailed analysis of this issue in the framework of the $$\mu \nu $$μνSSM. In this model, three families of right-handed neutrino superfields are present in order to solve the $$\mu $$μ problem and simultaneously reproduce neutrino physics. The new couplings and sneutrino vacuum expectation values in the $$\mu \nu $$μνSSM induce new mixing of states, and, in particular, the three right sneutrinos can be substantially mixed with the neutral Higgses. After diagonalization, the masses of the corresponding three singlet-like eigenstates can be smaller or larger than the mass of the Higgs, or even degenerated with it. We analyze whether these situations are still compatible with the experimental results. To address it we scan the parameter space of the Higgs sector of the model. In particular, we sample the $$\mu \nu $$μνSSM using a powerful likelihood data-driven method, paying special attention to satisfy the constraints coming from Higgs sector measurements/limits (using and ), as well as a class of flavor observables such as B and $$\mu $$μ decays, while muon $$g-2$$g-2 is briefly discussed. We find that large regions of the parameter space of the $$\mu \nu $$μνSSM are viable, containing an interesting phenomenology that could be probed at the LHC.

Keywords

Nuclear and High Energy Physics, Higgs boson, QC770-798, Astrophysics, Neutrino Oscillations, Particle Dark Matter and Detection Methods, Neutrino Interactions, Nuclear and particle physics. Atomic energy. Radioactivity, Neutrino, Parameter space, Machine learning, FOS: Mathematics, Particle Physics and High-Energy Collider Experiments, Physics, Statistics, Particle physics, Neutrino Detection, Neutrino Masses, Computer science, QB460-466, Algorithm, Physics and Astronomy, Physical Sciences, Neutrino Flavor Transformation and Detection, Supersymmetry, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 44
    download downloads 38
  • 44
    views
    38
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
17
Top 10%
Average
Top 10%
44
38
Green
gold