
doi: 10.1155/2020/7356408
Various iterative methods have been introduced by involving Taylor’s series on the auxiliary function g x to solve the nonlinear equation f x = 0 . In this paper, we introduce the expansion of g x with the inclusion of weights w i such that ∑ i = 1 p w i = 1 and knots τ i ∈ 0,1 in order to develop a new family of iterative methods. The methods proposed in the present paper are applicable for different choices of auxiliary function g x , and some already known methods can be viewed as the special cases of these methods. We consider the diverse scientific/engineering models to demonstrate the efficiency of the proposed methods.
QA1-939, Numerical computation of solutions to single equations, Mathematics
QA1-939, Numerical computation of solutions to single equations, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
