Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Symmetry, Integrabil...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2011
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2009
License: CC BY NC SA
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Four-Dimensional Spin Foam Perturbation Theory

Four-dimensional spin foam perturbation theory
Authors: Martins, J.F.; Mikovic, A.;

Four-Dimensional Spin Foam Perturbation Theory

Abstract

We define a four-dimensional spin-foam perturbation theory for the ${\rm BF}$-theory with a $B\wedge B$ potential term defined for a compact semi-simple Lie group $G$ on a compact orientable 4-manifold $M$. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group $U_q(\mathfrak{g})$ where $\mathfrak{g}$ is the Lie algebra of $G$ and $q$ is a root of unity. The Chain-Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners $��\otimes ��\to A$, where $A$ is the adjoint representation of $\mathfrak{g}$, is 1-dimensional for each irrep $��$. We calculate the partition function $Z$ in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold $M$. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that $Z$ is an analytic continuation of the Crane-Yetter partition function. Furthermore, we relate $Z$ to the partition function for the $F\wedge F$ theory.

Keywords

High Energy Physics - Theory, dilute-gas limit, crane-Yetter invariant, FOS: Physical sciences, Quantum groups (quantized enveloping algebras) and related deformations, Mathematical Physics (math-ph), General Relativity and Quantum Cosmology (gr-qc), spin foam models, Quantum field theory on lattices, Topological quantum field theories (aspects of differential topology), General Relativity and Quantum Cosmology, Crane-Yetter invariant, High Energy Physics - Theory (hep-th), Many-body theory; quantum Hall effect, QA1-939, spin-foam perturbation theory, Quantization of the gravitational field, BF-theory, Topological field theories in quantum mechanics, spin networks, Quantum groups and related algebraic methods applied to problems in quantum theory, Mathematics, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold