Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Plant Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2004
Data sources: HAL INRAE
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Arabidopsis COW1 gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth

Authors: Böhme, K.; Li, Y.; Charlot, Florence; Grierson, C.; Marrocco, K.; Okada, K.; Laloue, M.; +1 Authors

The Arabidopsis COW1 gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth

Abstract

SummaryRoot hairs are a major site for the uptake of water and nutrients into plants, and they form an increasingly important model system for the study of development in higher plants. We now report on the molecular genetic analysis of the srh1 mutant in Arabidopsis thaliana impaired in root hair tip growth. We show that srh1 is a new allele of cow1 (can of worms1) and we identified the COW1 gene using a positional cloning strategy. The N‐terminus of the COW1 protein is 32% identical to an essential phosphatidylinositol transfer protein (PITP), the yeast Sec14 protein (sec14p) while the C‐terminus is 34.5% identical to a late nodulin of Lotus japonicus, Nlj16. We show that expression of the COW1 lipid‐binding domain complements the growth defect associated with Sec14p dysfunction in yeast. In addition, we show that GFP fused to the COW1 protein specifically accumulates at the site of root hair outgrowth. We conclude that the COW1 protein is a PITP, essential for proper root hair growth.

Keywords

570, Molecular Sequence Data, Arabidopsis, Saccharomyces cerevisiae, Genes, Plant, Plant Roots, [SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics, Gene Expression Regulation, Plant, [SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants genetics, BRASSICACEA, Amino Acid Sequence, Phospholipid Transfer Proteins, Alleles, 580, Sequence Homology, Amino Acid, AMELIORATION DES PLANTES, GENETIQUE, BIOLOGIE MOLECULAIRE, Plants, Genetically Modified, Phenotype, Mutation, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!