
Deep learning, due to its unprecedented success in tasks such as image classification, has emerged as a new tool in image reconstruction with potential to change the field. In this paper, we demonstrate a crucial phenomenon: Deep learning typically yields unstable methods for image reconstruction. The instabilities usually occur in several forms: 1) Certain tiny, almost undetectable perturbations, both in the image and sampling domain, may result in severe artefacts in the reconstruction; 2) a small structural change, for example, a tumor, may not be captured in the reconstructed image; and 3) (a counterintuitive type of instability) more samples may yield poorer performance. Our stability test with algorithms and easy-to-use software detects the instability phenomena. The test is aimed at researchers, to test their networks for instabilities, and for government agencies, such as the Food and Drug Administration (FDA), to secure safe use of deep learning methods.
004
004
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 559 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.01% |
