Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JHEP Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JHEP Reports
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JHEP Reports
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JHEP Reports
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JHEP Reports
Article . 2021
License: CC BY NC ND
Data sources: ResearchOnline@GCU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PURE Aarhus University
Article . 2021
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance of models to predict hepatocellular carcinoma risk among UK patients with cirrhosis and cured HCV infection

Authors: Hamish Innes; Peter Jepsen; Scott McDonald; John Dillon; Victoria Hamill; Alan Yeung; Jennifer Benselin; +12 Authors

Performance of models to predict hepatocellular carcinoma risk among UK patients with cirrhosis and cured HCV infection

Abstract

Hepatocellular carcinoma (HCC) prediction models can inform clinical decisions about HCC screening provided their predictions are robust. We conducted an external validation of 6 HCC prediction models for UK patients with cirrhosis and a HCV virological cure.Patients with cirrhosis and cured HCV were identified from the Scotland HCV clinical database (N = 2,139) and the STratified medicine to Optimise Treatment of Hepatitis C Virus (STOP-HCV) study (N = 606). We calculated patient values for 4 competing non-genetic HCC prediction models, plus 2 genetic models (for the STOP-HCV cohort only). Follow-up began at the date of sustained virological response (SVR) achievement. HCC diagnoses were identified through linkage to nation-wide cancer, hospitalisation, and mortality registries. We compared discrimination and calibration measures between prediction models.Mean follow-up was 3.4-3.9 years, with 118 (Scotland) and 40 (STOP-HCV) incident HCCs observed. The age-male sex-ALBI-platelet count score (aMAP) model showed the best discrimination; for example, the Concordance index (C-index) in the Scottish cohort was 0.77 (95% CI 0.73-0.81). However, for all models, discrimination varied by cohort (being better for the Scottish cohort) and by age (being better for younger patients). In addition, genetic models performed better in patients with HCV genotype 3. The observed 3-year HCC risk was 3.3% (95% CI 2.6-4.2) and 5.1% (3.5-7.0%) in the Scottish and STOP-HCV cohorts, respectively. These were most closely matched by aMAP, in which the mean predicted 3-year risk was 3.6% and 5.0% in the Scottish and STOP-HCV cohorts, respectively.aMAP was the best-performing model in terms of both discrimination and calibration and, therefore, should be used as a benchmark for rival models to surpass. This study underlines the opportunity for 'real-world' risk stratification in patients with cirrhosis and cured HCV. However, auxiliary research is needed to help translate an HCC risk prediction into an HCC-screening decision.Patients with cirrhosis and cured HCV are at high risk of developing liver cancer, although the risk varies substantially from one patient to the next. Risk calculator tools can alert clinicians to patients at high risk and thereby influence decision-making. In this study, we tested the performance of 6 risk calculators in more than 2,500 patients with cirrhosis and cured HCV. We show that some risk calculators are considerably better than others. Overall, we found that the 'aMAP' calculator worked the best, but more work is needed to convert predictions into clinical decisions.

Country
United Kingdom
Keywords

primary liver cancer, 610, RC799-869, name=Internal Medicine, risk prediction, /dk/atira/pure/subjectarea/asjc/2700/2721, external validation, SDG 3 - Good Health and Well-being, /dk/atira/pure/subjectarea/asjc/2700/2723, /dk/atira/pure/subjectarea/asjc/2700/2724, genetic risk factors, Internal Medicine, Immunology and Allergy, Hepatology, Primary liver cancer, Gastroenterology, /dk/atira/pure/subjectarea/asjc/2700/2715, Diseases of the digestive system. Gastroenterology, Prognosis, Risk prediction, name=Hepatology, External validation, name=Immunology and Allergy, name=Gastroenterology, Genetic risk scores, prognosis, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Green
gold