
In a convex grid drawing of a plane graph, every edge is drawn as a straight-line segment without any edge-intersection, every vertex is located at a grid point, and every facial cycle is drawn as a convex polygon. A plane graph G has a convex drawing if and only if G is internally triconnected. It has been known that an internally triconnected plane graph G of n vertices has a convex grid drawing on a grid of O(n3) area if the triconnected component decomposition tree of G has at most four leaves. In this paper, we improve the area bound O(n3) to O(n2), which is optimal up to a constant factor. More precisely, we show that G has a convex grid drawing on a 2n × 4n grid. We also present an algorithm to find such a drawing in linear time.
convex drawing, plane graph, Graph algorithms (graph-theoretic aspects), Graph representations (geometric and intersection representations, etc.), triconnected component decomposition
convex drawing, plane graph, Graph algorithms (graph-theoretic aspects), Graph representations (geometric and intersection representations, etc.), triconnected component decomposition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
