
Catalan numbers $C(n)=\frac{1}{n+1}{2n\choose n}$ enumerate binary trees and Dyck paths. The distribution of paths with respect to their number $k$ of factors is given by ballot numbers $B(n,k)=\frac{n-k}{n+k}{n+k\choose n}$. These integers are known to satisfy simple recurrence, which may be visualised in a ``Catalan triangle'', a lower-triangular two-dimensional array. It is surprising that the extension of this construction to 3 dimensions generates integers $B_3(n,k,l)$ that give a 2-parameter distribution of $C_3(n)=\frac 1 {2n+1} {3n\choose n}$, which may be called order-3 Fuss-Catalan numbers, and enumerate ternary trees. The aim of this paper is a study of these integers $B_3(n,k,l)$. We obtain an explicit formula and a description in terms of trees and paths. Finally, we extend our construction to $p$-dimensional arrays, and in this case we obtain a $(p-1)$-parameter distribution of $C_p(n)=\frac 1 {(p-1)n+1} {pn\choose n}$, the number of $p$-ary trees.
Statistics on paths and trees, FOS: Mathematics, Discrete Mathematics and Combinatorics, Mathematics - Combinatorics, Combinatorics (math.CO), Catalan numbers, Theoretical Computer Science
Statistics on paths and trees, FOS: Mathematics, Discrete Mathematics and Combinatorics, Mathematics - Combinatorics, Combinatorics (math.CO), Catalan numbers, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
