
Abstract Many companies face challenges in reducing their supply chain costs while increasing sustainability and customer service levels. A comprehensive framework for a sustainable closed-loop supply chain (CLSC) network is a practical solution to these challenges. Hence, for the first time, this study considers an integrated multi-objective mixed-integer linear programming (MOMILP) model to design sustainable CLSC networks with cross-docking, location-inventory-routing, time window, supplier selection, order allocation, transportation modes with simultaneous pickup, and delivery under uncertainty. An intelligent simulation algorithm is proposed to produce CLSC network data with probabilistic distribution functions and feasible solution space. In addition, a fuzzy goal programming approach is proposed to solve the MOMILP model under uncertainty. Eight small and medium-size test problems are used to evaluate the performance of the proposed model with the simulated data in GAMS software. The results obtained from test problems and sensitivity analysis show the efficacy of the proposed model.
Location-inventory-routing, 650, Pickup and delivery, Business Intelligence, Sustainable CLSC, Operations and Supply Chain Management, Fuzzy goal programming, Network design
Location-inventory-routing, 650, Pickup and delivery, Business Intelligence, Sustainable CLSC, Operations and Supply Chain Management, Fuzzy goal programming, Network design
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 108 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
