Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao General Pharmacology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
General Pharmacology The Vascular System
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa

Authors: L T, Yamamoto; S, Horie; H, Takayama; N, Aimi; S, Sakai; S, Yano; J, Shan; +3 Authors

Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa

Abstract

We have previously elucidated the opiate-like action of mitragynine, an active principle isolated from the Thai medicinal plant Mitragyna speciosa. In the present study, effects of the related compound, mitragynine pseudoindoxyl on electrically stimulated contraction in guinea pig ileum and mouse vas deferens, and on its binding affinity in the guinea pig brain membranes were studied. Mitragynine pseudoindoxyl inhibited the electrically stimulated ileum and mouse vas deferens contractions in a concentration-dependent manner. In the ileum, the effective concentration is in an nM order, being nearly equivalent to reported concentrations of the micro-opioid receptor agonist [D-Ala2, Met-Phe4, Gly-ol5] enkephalin (DAMGO), and is 100- and 20-fold smaller than those of mitragynine and morphine, respectively. In the vas deferens, it is 35-fold smaller than that of morphine. The inhibitory action of mitragynine pseudoindoxyl in the ileum was antagonized by the non-selective opioid receptor antagonist naloxone and the micro-receptor antagonist naloxonazine. It was also antagonized by the delta-receptor antagonist naltrindole in the vas deferens. Mitragynine pseudoindoxyl showed a similar binding affinity to DAMGO and naltrindole at micro- and delta-receptors, respectively. However, the affinity at kappa-receptors was negligible. The present study demonstrates that mitragynine pseudoindoxyl, a novel alkaloid structurally different from other opioid agonists, acts on opioid receptors, leading to a potent inhibition of electrically stimulated contraction in the ileum through the micro-receptors and in mouse vas deferens through delta-receptors.

Keywords

Male, Analgesics, Plants, Medicinal, Dose-Response Relationship, Drug, Naloxone, Narcotic Antagonists, Guinea Pigs, Brain, Muscle, Smooth, In Vitro Techniques, Thailand, Binding, Competitive, Secologanin Tryptamine Alkaloids, Electric Stimulation, Mice, Vas Deferens, Ileum, Receptors, Opioid, Animals, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    100
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
100
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!