Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant and Soilarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant and Soil
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2010
Data sources: HAL INRAE
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth

Authors: Bedoussac, Laurent; Justes, Eric;

The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth

Abstract

Grain protein concentration of durum wheat is often too low, particularly in low-N-input systems. The aim of our study was to test whether a durum wheat-winter pea intercrop can improve relative yield and durum wheat grain protein concentration in low-N-input systems. A 2-year field experiment was carried out in SW France with different fertilizer-N levels to compare wheat (Triticum turgidum L., cv. Nefer) and pea (winter pea, Pisum sativum L., cv. Lucy) grown as sole crops or intercrops in a row-substitutive design. Without N fertilization or when N was applied late (N available until pea flowering less than about 120 kg N ha−1), intercrops were up to 19% more efficient than sole crops for yield and up to 32% for accumulated N, but were less efficient with large fertilizer N applications. Wheat grain protein concentration was significantly higher in intercrops than in sole crops (14% on average) because more N was remobilized into wheat grain due to: i) fewer ears per square metre in intercrops and ii) a similar amount of available soil N as in sole crops due to the high pea N2 fixation rate in intercrops (88% compared to 58% in sole crops).

Country
France
Keywords

Agronomie, nitrogen nutrition index, Plant competition, complementary resource use, Complementary resource use, Grain protein concentration, Nitrogen fixation, nitrogen acquisition, [SDV.BV]Life Sciences [q-bio]/Vegetal Biology, protein concentration, [SDV.BV] Life Sciences [q-bio]/Vegetal Biology, analyse minérale ;sol d'alluvion, index ip, grain, plant competition, Land equivalent ratio (LER), land equivalent ratio (ler), nitrogen nutrition index ; phosphorus nutrition index ; legums ; analyse minérale ;sol d'alluvion ; index ip ; complementary resource use ; grain ; protein concentration ; land equivalent ratio (ler) ; nitrogen acquisition ; nitrogen fixation ; plant competition, legums, nitrogen fixation, phosphorus nutrition index, Nitrogen acquisition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 20
    download downloads 26
  • 20
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
173
Top 1%
Top 10%
Top 10%
20
26
Green
bronze