Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Behavior and Immunity
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Pasteur
Article . 2022
Data sources: HAL-Pasteur
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2022
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2022
Data sources: HAL INRAE
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intranasal delivery of SARS-CoV-2 spike protein is sufficient to cause olfactory damage, inflammation and olfactory dysfunction in zebrafish

Authors: Kraus, Aurora; Huertas, Mar; Ellis, Laura; Boudinot, Pierre; Levraud, Jean-Pierre; Salinas, Irene;

Intranasal delivery of SARS-CoV-2 spike protein is sufficient to cause olfactory damage, inflammation and olfactory dysfunction in zebrafish

Abstract

Anosmia, loss of smell, is a prevalent symptom of SARS-CoV-2 infection. Anosmia may be explained by several mechanisms driven by infection of non-neuronal cells and damage in the nasal epithelium rather than direct infection of olfactory sensory neurons (OSNs). Previously, we showed that viral proteins are sufficient to cause neuroimmune responses in the teleost olfactory organ (OO). We hypothesize that SARS-CoV-2 spike (S) protein is sufficient to cause olfactory damage and olfactory dysfunction. Using an adult zebrafish model, we report that intranasally delivered SARS-CoV-2 S RBD mostly binds to the non-sensory epithelium of the olfactory organ and causes severe olfactory histopathology characterized by loss of cilia, hemorrhages and edema. Electrophysiological recordings reveal impaired olfactory function to both food and bile odorants in animals treated intranasally with SARS-CoV-2 S RBD. However, no loss of behavioral preference for food was detected in SARS-CoV-2 S RBD treated fish. Single cell RNA-Seq of the adult zebrafish olfactory organ indicated widespread loss of olfactory receptor expression and inflammatory responses in sustentacular, endothelial, and myeloid cell clusters along with reduced numbers of Tregs. Combined, our results demonstrate that intranasal SARS-CoV-2 S RBD is sufficient to cause structural and functional damage to the zebrafish olfactory system. These findings may have implications for intranasally delivered vaccines against SARS-CoV-2.

Country
France
Keywords

570, COVID-19 Vaccines, [SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, Anosmia, [SDV.NEU.PC] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Psychology and behavior, 610, Spike protein, EOG, Olfactory Mucosa, Zebrafish (Danio rerio), Animals, Humans, Olfactory receptor expression, Zebrafish, Full-length Article, Inflammation, [SDV.NEU.PC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Psychology and behavior, SARS-CoV-2, [SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, [SDV.NEU.SC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive Sciences, COVID-19, Animal models, Spike Glycoprotein, Coronavirus, Olfactory damage, [SDV.NEU.SC] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Cognitive Sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Average
Top 1%
Green