Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2007
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intersective polynomials and polynomial Szemeredi theorem

Authors: Bergelson, Vitaly; Leibman, Alexander; Lesigne, Emmanuel;

Intersective polynomials and polynomial Szemeredi theorem

Abstract

Let $P=\{p_{1},\ld,p_{r}\}\subset\Q[n_{1},\ld,n_{m}]$ be a family of polynomials such that $p_{i}(\Z^{m})\sle\Z$, $i=1,\ld,r$. We say that the family $P$ has {\it PSZ property} if for any set $E\sle\Z$ with $d^{*}(E)=\limsup_{N-M\ras\infty}\frac{|E\cap[M,N-1]|}{N-M}>0$ there exist infinitely many $n\in\Z^{m}$ such that $E$ contains a polynomial progression of the form \hbox{$\{a,a+p_{1}(n),\ld,a+p_{r}(n)\}$}. We prove that a polynomial family $P=\{p_{1},\ld,p_{r}\}$ has PSZ property if and only if the polynomials $p_{1},\ld,p_{r}$ are {\it jointly intersective}, meaning that for any $k\in\N$ there exists $n\in\Z^{m}$ such that the integers $p_{1}(n),\ld,p_{r}(n)$ are all divisible by $k$. To obtain this result we give a new ergodic proof of the polynomial Szemer��di theorem, based on the fact that the key to the phenomenon of polynomial multiple recurrence lies with the dynamical systems defined by translations on nilmanifolds. We also obtain, as a corollary, the following generalization of the polynomial van der Waerden theorem: If $p_{1},\ld,p_{r}\in\Q[n]$ are jointly intersective integral polynomials, then for any finite partition of $\Z$, $\Z=\bigcup_{i=1}^{k}E_{i}$, there exist $i\in\{1,\ld,k\}$ and $a,n\in E_{i}$ such that $\{a,a+p_{1}(n),\ld,a+p_{r}(n)\}\sln E_{i}$.

Country
France
Keywords

[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO], FOS: Mathematics, [MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS], Mathematics - Combinatorics, Dynamical Systems (math.DS), Combinatorics (math.CO), Mathematics - Dynamical Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green