
arXiv: 0710.4862
Let $P=\{p_{1},\ld,p_{r}\}\subset\Q[n_{1},\ld,n_{m}]$ be a family of polynomials such that $p_{i}(\Z^{m})\sle\Z$, $i=1,\ld,r$. We say that the family $P$ has {\it PSZ property} if for any set $E\sle\Z$ with $d^{*}(E)=\limsup_{N-M\ras\infty}\frac{|E\cap[M,N-1]|}{N-M}>0$ there exist infinitely many $n\in\Z^{m}$ such that $E$ contains a polynomial progression of the form \hbox{$\{a,a+p_{1}(n),\ld,a+p_{r}(n)\}$}. We prove that a polynomial family $P=\{p_{1},\ld,p_{r}\}$ has PSZ property if and only if the polynomials $p_{1},\ld,p_{r}$ are {\it jointly intersective}, meaning that for any $k\in\N$ there exists $n\in\Z^{m}$ such that the integers $p_{1}(n),\ld,p_{r}(n)$ are all divisible by $k$. To obtain this result we give a new ergodic proof of the polynomial Szemer��di theorem, based on the fact that the key to the phenomenon of polynomial multiple recurrence lies with the dynamical systems defined by translations on nilmanifolds. We also obtain, as a corollary, the following generalization of the polynomial van der Waerden theorem: If $p_{1},\ld,p_{r}\in\Q[n]$ are jointly intersective integral polynomials, then for any finite partition of $\Z$, $\Z=\bigcup_{i=1}^{k}E_{i}$, there exist $i\in\{1,\ld,k\}$ and $a,n\in E_{i}$ such that $\{a,a+p_{1}(n),\ld,a+p_{r}(n)\}\sln E_{i}$.
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO], FOS: Mathematics, [MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS], Mathematics - Combinatorics, Dynamical Systems (math.DS), Combinatorics (math.CO), Mathematics - Dynamical Systems
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO], FOS: Mathematics, [MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS], Mathematics - Combinatorics, Dynamical Systems (math.DS), Combinatorics (math.CO), Mathematics - Dynamical Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
